webrtc/modules/video_coding/codecs/test/videoprocessor.cc
Henrik Boström 2e540a28c0 Introduce EncodedImage.SimulcastIndex().
As part of go/unblocking-vp9-simulcast (Step 1), EncodedImage is being
upgraded to be able to differentiate between what is a simulcast index
and what is a spatial index.

In order not to break existing code assuming that "if codec != VP9,
SpatialIndex() is the simulcast index", SimulcastIndex() has fallback
logic to return the value of spatial_index_ in the event that
SetSimulcastIndex() has not been called. This allows migrating external
code from (Set)SpatialIndex() to (Set)SimulcastIndex(). During this
intermediate time, codec gates are still necessary in some places of
the code, see TODOs added.

In a follow-up CL, after having fixed dependencies, we'll be able to
remove the fallback logic and rely on SimulcastIndex() and
SpatialIndex() actually being the advertised index and "if codec..."
hacks will be a thing of the past!

Bug: webrtc:14884
Change-Id: I70095c091d0ce2336640451150888a3c3841df80
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/293343
Commit-Queue: Henrik Boström <hbos@webrtc.org>
Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org>
Reviewed-by: Erik Språng <sprang@webrtc.org>
Reviewed-by: Evan Shrubsole <eshr@webrtc.org>
Reviewed-by: Philip Eliasson <philipel@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39318}
2023-02-15 15:02:57 +00:00

726 lines
29 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/test/videoprocessor.h"
#include <string.h>
#include <algorithm>
#include <cstddef>
#include <limits>
#include <memory>
#include <utility>
#include "api/scoped_refptr.h"
#include "api/video/builtin_video_bitrate_allocator_factory.h"
#include "api/video/i420_buffer.h"
#include "api/video/video_bitrate_allocator_factory.h"
#include "api/video/video_frame_buffer.h"
#include "api/video/video_rotation.h"
#include "api/video_codecs/video_codec.h"
#include "api/video_codecs/video_encoder.h"
#include "common_video/h264/h264_common.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/video_coding/codecs/interface/common_constants.h"
#include "modules/video_coding/include/video_error_codes.h"
#include "rtc_base/checks.h"
#include "rtc_base/time_utils.h"
#include "test/gtest.h"
#include "third_party/libyuv/include/libyuv/compare.h"
#include "third_party/libyuv/include/libyuv/scale.h"
namespace webrtc {
namespace test {
namespace {
const int kMsToRtpTimestamp = kVideoPayloadTypeFrequency / 1000;
const int kMaxBufferedInputFrames = 20;
const VideoEncoder::Capabilities kCapabilities(false);
size_t GetMaxNaluSizeBytes(const EncodedImage& encoded_frame,
const VideoCodecTestFixture::Config& config) {
if (config.codec_settings.codecType != kVideoCodecH264)
return 0;
std::vector<webrtc::H264::NaluIndex> nalu_indices =
webrtc::H264::FindNaluIndices(encoded_frame.data(), encoded_frame.size());
RTC_CHECK(!nalu_indices.empty());
size_t max_size = 0;
for (const webrtc::H264::NaluIndex& index : nalu_indices)
max_size = std::max(max_size, index.payload_size);
return max_size;
}
size_t GetTemporalLayerIndex(const CodecSpecificInfo& codec_specific) {
size_t temporal_idx = 0;
if (codec_specific.codecType == kVideoCodecVP8) {
temporal_idx = codec_specific.codecSpecific.VP8.temporalIdx;
} else if (codec_specific.codecType == kVideoCodecVP9) {
temporal_idx = codec_specific.codecSpecific.VP9.temporal_idx;
}
if (temporal_idx == kNoTemporalIdx) {
temporal_idx = 0;
}
return temporal_idx;
}
int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) {
int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec;
RTC_DCHECK_GE(diff_us, std::numeric_limits<int>::min());
RTC_DCHECK_LE(diff_us, std::numeric_limits<int>::max());
return static_cast<int>(diff_us);
}
void CalculateFrameQuality(const I420BufferInterface& ref_buffer,
const I420BufferInterface& dec_buffer,
VideoCodecTestStats::FrameStatistics* frame_stat,
bool calc_ssim) {
if (ref_buffer.width() != dec_buffer.width() ||
ref_buffer.height() != dec_buffer.height()) {
RTC_CHECK_GE(ref_buffer.width(), dec_buffer.width());
RTC_CHECK_GE(ref_buffer.height(), dec_buffer.height());
// Downscale reference frame.
rtc::scoped_refptr<I420Buffer> scaled_buffer =
I420Buffer::Create(dec_buffer.width(), dec_buffer.height());
I420Scale(ref_buffer.DataY(), ref_buffer.StrideY(), ref_buffer.DataU(),
ref_buffer.StrideU(), ref_buffer.DataV(), ref_buffer.StrideV(),
ref_buffer.width(), ref_buffer.height(),
scaled_buffer->MutableDataY(), scaled_buffer->StrideY(),
scaled_buffer->MutableDataU(), scaled_buffer->StrideU(),
scaled_buffer->MutableDataV(), scaled_buffer->StrideV(),
scaled_buffer->width(), scaled_buffer->height(),
libyuv::kFilterBox);
CalculateFrameQuality(*scaled_buffer, dec_buffer, frame_stat, calc_ssim);
} else {
const uint64_t sse_y = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataY(), dec_buffer.StrideY(), ref_buffer.DataY(),
ref_buffer.StrideY(), dec_buffer.width(), dec_buffer.height());
const uint64_t sse_u = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataU(), dec_buffer.StrideU(), ref_buffer.DataU(),
ref_buffer.StrideU(), dec_buffer.width() / 2, dec_buffer.height() / 2);
const uint64_t sse_v = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataV(), dec_buffer.StrideV(), ref_buffer.DataV(),
ref_buffer.StrideV(), dec_buffer.width() / 2, dec_buffer.height() / 2);
const size_t num_y_samples = dec_buffer.width() * dec_buffer.height();
const size_t num_u_samples =
dec_buffer.width() / 2 * dec_buffer.height() / 2;
frame_stat->psnr_y = libyuv::SumSquareErrorToPsnr(sse_y, num_y_samples);
frame_stat->psnr_u = libyuv::SumSquareErrorToPsnr(sse_u, num_u_samples);
frame_stat->psnr_v = libyuv::SumSquareErrorToPsnr(sse_v, num_u_samples);
frame_stat->psnr = libyuv::SumSquareErrorToPsnr(
sse_y + sse_u + sse_v, num_y_samples + 2 * num_u_samples);
if (calc_ssim) {
frame_stat->ssim = I420SSIM(ref_buffer, dec_buffer);
}
}
}
} // namespace
VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder,
VideoDecoderList* decoders,
FrameReader* input_frame_reader,
const VideoCodecTestFixture::Config& config,
VideoCodecTestStatsImpl* stats,
IvfFileWriterMap* encoded_frame_writers,
FrameWriterList* decoded_frame_writers)
: config_(config),
num_simulcast_or_spatial_layers_(
std::max(config_.NumberOfSimulcastStreams(),
config_.NumberOfSpatialLayers())),
analyze_frame_quality_(!config_.measure_cpu),
stats_(stats),
encoder_(encoder),
decoders_(decoders),
bitrate_allocator_(
CreateBuiltinVideoBitrateAllocatorFactory()
->CreateVideoBitrateAllocator(config_.codec_settings)),
encode_callback_(this),
input_frame_reader_(input_frame_reader),
merged_encoded_frames_(num_simulcast_or_spatial_layers_),
encoded_frame_writers_(encoded_frame_writers),
decoded_frame_writers_(decoded_frame_writers),
last_inputed_frame_num_(0),
last_inputed_timestamp_(0),
first_encoded_frame_(num_simulcast_or_spatial_layers_, true),
last_encoded_frame_num_(num_simulcast_or_spatial_layers_),
first_decoded_frame_(num_simulcast_or_spatial_layers_, true),
last_decoded_frame_num_(num_simulcast_or_spatial_layers_),
last_decoded_frame_buffer_(num_simulcast_or_spatial_layers_),
post_encode_time_ns_(0),
is_finalized_(false) {
// Sanity checks.
RTC_CHECK(TaskQueueBase::Current())
<< "VideoProcessor must be run on a task queue.";
RTC_CHECK(stats_);
RTC_CHECK(encoder_);
RTC_CHECK(decoders_);
RTC_CHECK_EQ(decoders_->size(), num_simulcast_or_spatial_layers_);
RTC_CHECK(input_frame_reader_);
RTC_CHECK(encoded_frame_writers_);
RTC_CHECK(!decoded_frame_writers ||
decoded_frame_writers->size() == num_simulcast_or_spatial_layers_);
// Setup required callbacks for the encoder and decoder and initialize them.
RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_),
WEBRTC_VIDEO_CODEC_OK);
// Initialize codecs so that they are ready to receive frames.
RTC_CHECK_EQ(encoder_->InitEncode(
&config_.codec_settings,
VideoEncoder::Settings(
kCapabilities, static_cast<int>(config_.NumberOfCores()),
config_.max_payload_size_bytes)),
WEBRTC_VIDEO_CODEC_OK);
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
decode_callback_.push_back(
std::make_unique<VideoProcessorDecodeCompleteCallback>(this, i));
VideoDecoder::Settings decoder_settings;
decoder_settings.set_max_render_resolution(
{config_.codec_settings.width, config_.codec_settings.height});
decoder_settings.set_codec_type(config_.codec_settings.codecType);
decoder_settings.set_number_of_cores(config_.NumberOfCores());
RTC_CHECK(decoders_->at(i)->Configure(decoder_settings));
RTC_CHECK_EQ(decoders_->at(i)->RegisterDecodeCompleteCallback(
decode_callback_.at(i).get()),
WEBRTC_VIDEO_CODEC_OK);
}
}
VideoProcessor::~VideoProcessor() {
RTC_DCHECK_RUN_ON(&sequence_checker_);
if (!is_finalized_) {
Finalize();
}
// Explicitly reset codecs, in case they don't do that themselves when they
// go out of scope.
RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK);
encoder_->RegisterEncodeCompleteCallback(nullptr);
for (auto& decoder : *decoders_) {
RTC_CHECK_EQ(decoder->Release(), WEBRTC_VIDEO_CODEC_OK);
decoder->RegisterDecodeCompleteCallback(nullptr);
}
// Sanity check.
RTC_CHECK_LE(input_frames_.size(), kMaxBufferedInputFrames);
}
void VideoProcessor::ProcessFrame() {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_DCHECK(!is_finalized_);
RTC_DCHECK_GT(target_rates_.size(), 0u);
RTC_DCHECK_EQ(target_rates_.begin()->first, 0u);
RateProfile target_rate =
std::prev(target_rates_.upper_bound(last_inputed_frame_num_))->second;
const size_t frame_number = last_inputed_frame_num_++;
// Get input frame and store for future quality calculation.
Resolution resolution = Resolution({.width = config_.codec_settings.width,
.height = config_.codec_settings.height});
FrameReader::Ratio framerate_scale = FrameReader::Ratio(
{.num = config_.clip_fps.value_or(config_.codec_settings.maxFramerate),
.den = static_cast<int>(config_.codec_settings.maxFramerate)});
rtc::scoped_refptr<I420BufferInterface> buffer =
input_frame_reader_->PullFrame(
/*frame_num*/ nullptr, resolution, framerate_scale);
RTC_CHECK(buffer) << "Tried to read too many frames from the file.";
const size_t timestamp =
last_inputed_timestamp_ +
static_cast<size_t>(kVideoPayloadTypeFrequency / target_rate.input_fps);
VideoFrame input_frame =
VideoFrame::Builder()
.set_video_frame_buffer(buffer)
.set_timestamp_rtp(static_cast<uint32_t>(timestamp))
.set_timestamp_ms(static_cast<int64_t>(timestamp / kMsToRtpTimestamp))
.set_rotation(webrtc::kVideoRotation_0)
.build();
// Store input frame as a reference for quality calculations.
if (config_.decode && !config_.measure_cpu) {
if (input_frames_.size() == kMaxBufferedInputFrames) {
input_frames_.erase(input_frames_.begin());
}
if (config_.reference_width != -1 && config_.reference_height != -1 &&
(input_frame.width() != config_.reference_width ||
input_frame.height() != config_.reference_height)) {
rtc::scoped_refptr<I420Buffer> scaled_buffer = I420Buffer::Create(
config_.codec_settings.width, config_.codec_settings.height);
scaled_buffer->ScaleFrom(*input_frame.video_frame_buffer()->ToI420());
VideoFrame scaled_reference_frame = input_frame;
scaled_reference_frame.set_video_frame_buffer(scaled_buffer);
input_frames_.emplace(frame_number, scaled_reference_frame);
if (config_.reference_width == config_.codec_settings.width &&
config_.reference_height == config_.codec_settings.height) {
// Both encoding and comparison uses the same down-scale factor, reuse
// it for encoder below.
input_frame = scaled_reference_frame;
}
} else {
input_frames_.emplace(frame_number, input_frame);
}
}
last_inputed_timestamp_ = timestamp;
post_encode_time_ns_ = 0;
// Create frame statistics object for all simulcast/spatial layers.
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
FrameStatistics frame_stat(frame_number, timestamp, i);
stats_->AddFrame(frame_stat);
}
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
const int64_t encode_start_ns = rtc::TimeNanos();
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i);
frame_stat->encode_start_ns = encode_start_ns;
}
if (input_frame.width() != config_.codec_settings.width ||
input_frame.height() != config_.codec_settings.height) {
rtc::scoped_refptr<I420Buffer> scaled_buffer = I420Buffer::Create(
config_.codec_settings.width, config_.codec_settings.height);
scaled_buffer->ScaleFrom(*input_frame.video_frame_buffer()->ToI420());
input_frame.set_video_frame_buffer(scaled_buffer);
}
// Encode.
const std::vector<VideoFrameType> frame_types =
(frame_number == 0)
? std::vector<VideoFrameType>(num_simulcast_or_spatial_layers_,
VideoFrameType::kVideoFrameKey)
: std::vector<VideoFrameType>(num_simulcast_or_spatial_layers_,
VideoFrameType::kVideoFrameDelta);
const int encode_return_code = encoder_->Encode(input_frame, &frame_types);
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i);
frame_stat->encode_return_code = encode_return_code;
}
}
void VideoProcessor::SetRates(size_t bitrate_kbps, double framerate_fps) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_DCHECK(!is_finalized_);
target_rates_[last_inputed_frame_num_] =
RateProfile({.target_kbps = bitrate_kbps, .input_fps = framerate_fps});
auto bitrate_allocation =
bitrate_allocator_->Allocate(VideoBitrateAllocationParameters(
static_cast<uint32_t>(bitrate_kbps * 1000), framerate_fps));
encoder_->SetRates(
VideoEncoder::RateControlParameters(bitrate_allocation, framerate_fps));
}
int32_t VideoProcessor::VideoProcessorDecodeCompleteCallback::Decoded(
VideoFrame& image) {
// Post the callback to the right task queue, if needed.
if (!task_queue_->IsCurrent()) {
// There might be a limited amount of output buffers, make a copy to make
// sure we don't block the decoder.
VideoFrame copy = VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Copy(
*image.video_frame_buffer()->ToI420()))
.set_rotation(image.rotation())
.set_timestamp_us(image.timestamp_us())
.set_id(image.id())
.build();
copy.set_timestamp(image.timestamp());
task_queue_->PostTask([this, copy]() {
video_processor_->FrameDecoded(copy, simulcast_svc_idx_);
});
return 0;
}
video_processor_->FrameDecoded(image, simulcast_svc_idx_);
return 0;
}
void VideoProcessor::FrameEncoded(
const webrtc::EncodedImage& encoded_image,
const webrtc::CodecSpecificInfo& codec_specific) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
const int64_t encode_stop_ns = rtc::TimeNanos();
const VideoCodecType codec_type = codec_specific.codecType;
if (config_.encoded_frame_checker) {
config_.encoded_frame_checker->CheckEncodedFrame(codec_type, encoded_image);
}
// Layer metadata.
// We could either have simulcast layers or spatial layers.
// TODO(https://crbug.com/webrtc/14891): If we want to support a mix of
// simulcast and SVC we'll also need to consider the case where we have both
// simulcast and spatial indices.
size_t stream_idx = encoded_image.SpatialIndex().value_or(
encoded_image.SimulcastIndex().value_or(0));
size_t temporal_idx = GetTemporalLayerIndex(codec_specific);
FrameStatistics* frame_stat =
stats_->GetFrameWithTimestamp(encoded_image.Timestamp(), stream_idx);
const size_t frame_number = frame_stat->frame_number;
// Ensure that the encode order is monotonically increasing, within this
// simulcast/spatial layer.
RTC_CHECK(first_encoded_frame_[stream_idx] ||
last_encoded_frame_num_[stream_idx] < frame_number);
// Ensure SVC spatial layers are delivered in ascending order.
const size_t num_spatial_layers = config_.NumberOfSpatialLayers();
if (!first_encoded_frame_[stream_idx] && num_spatial_layers > 1) {
for (size_t i = 0; i < stream_idx; ++i) {
RTC_CHECK_LE(last_encoded_frame_num_[i], frame_number);
}
for (size_t i = stream_idx + 1; i < num_simulcast_or_spatial_layers_; ++i) {
RTC_CHECK_GT(frame_number, last_encoded_frame_num_[i]);
}
}
first_encoded_frame_[stream_idx] = false;
last_encoded_frame_num_[stream_idx] = frame_number;
RateProfile target_rate =
std::prev(target_rates_.upper_bound(frame_number))->second;
auto bitrate_allocation =
bitrate_allocator_->Allocate(VideoBitrateAllocationParameters(
static_cast<uint32_t>(target_rate.target_kbps * 1000),
target_rate.input_fps));
// Update frame statistics.
frame_stat->encoding_successful = true;
frame_stat->encode_time_us = GetElapsedTimeMicroseconds(
frame_stat->encode_start_ns, encode_stop_ns - post_encode_time_ns_);
frame_stat->target_bitrate_kbps =
bitrate_allocation.GetTemporalLayerSum(stream_idx, temporal_idx) / 1000;
frame_stat->target_framerate_fps = target_rate.input_fps;
frame_stat->length_bytes = encoded_image.size();
frame_stat->frame_type = encoded_image._frameType;
frame_stat->temporal_idx = temporal_idx;
frame_stat->max_nalu_size_bytes = GetMaxNaluSizeBytes(encoded_image, config_);
frame_stat->qp = encoded_image.qp_;
if (codec_type == kVideoCodecVP9) {
const CodecSpecificInfoVP9& vp9_info = codec_specific.codecSpecific.VP9;
frame_stat->inter_layer_predicted = vp9_info.inter_layer_predicted;
frame_stat->non_ref_for_inter_layer_pred =
vp9_info.non_ref_for_inter_layer_pred;
} else {
frame_stat->inter_layer_predicted = false;
frame_stat->non_ref_for_inter_layer_pred = true;
}
const webrtc::EncodedImage* encoded_image_for_decode = &encoded_image;
if (config_.decode || !encoded_frame_writers_->empty()) {
if (num_spatial_layers > 1) {
encoded_image_for_decode = BuildAndStoreSuperframe(
encoded_image, codec_type, frame_number, stream_idx,
frame_stat->inter_layer_predicted);
}
}
if (config_.decode) {
DecodeFrame(*encoded_image_for_decode, stream_idx);
if (codec_specific.end_of_picture && num_spatial_layers > 1) {
// If inter-layer prediction is enabled and upper layer was dropped then
// base layer should be passed to upper layer decoder. Otherwise decoder
// won't be able to decode next superframe.
const EncodedImage* base_image = nullptr;
const FrameStatistics* base_stat = nullptr;
for (size_t i = 0; i < num_spatial_layers; ++i) {
const bool layer_dropped = (first_decoded_frame_[i] ||
last_decoded_frame_num_[i] < frame_number);
// Ensure current layer was decoded.
RTC_CHECK(layer_dropped == false || i != stream_idx);
if (!layer_dropped) {
base_image = &merged_encoded_frames_[i];
base_stat =
stats_->GetFrameWithTimestamp(encoded_image.Timestamp(), i);
} else if (base_image && !base_stat->non_ref_for_inter_layer_pred) {
DecodeFrame(*base_image, i);
}
}
}
} else {
frame_stat->decode_return_code = WEBRTC_VIDEO_CODEC_NO_OUTPUT;
}
// Since frames in higher TLs typically depend on frames in lower TLs,
// write out frames in lower TLs to bitstream dumps of higher TLs.
for (size_t write_temporal_idx = temporal_idx;
write_temporal_idx < config_.NumberOfTemporalLayers();
++write_temporal_idx) {
const VideoProcessor::LayerKey layer_key(stream_idx, write_temporal_idx);
auto it = encoded_frame_writers_->find(layer_key);
if (it != encoded_frame_writers_->cend()) {
RTC_CHECK(it->second->WriteFrame(*encoded_image_for_decode,
config_.codec_settings.codecType));
}
}
if (!config_.encode_in_real_time) {
// To get pure encode time for next layers, measure time spent in encode
// callback and subtract it from encode time of next layers.
post_encode_time_ns_ += rtc::TimeNanos() - encode_stop_ns;
}
}
void VideoProcessor::CalcFrameQuality(const I420BufferInterface& decoded_frame,
FrameStatistics* frame_stat) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
const auto reference_frame = input_frames_.find(frame_stat->frame_number);
RTC_CHECK(reference_frame != input_frames_.cend())
<< "The codecs are either buffering too much, dropping too much, or "
"being too slow relative to the input frame rate.";
// SSIM calculation is not optimized. Skip it in real-time mode.
const bool calc_ssim = !config_.encode_in_real_time;
CalculateFrameQuality(*reference_frame->second.video_frame_buffer()->ToI420(),
decoded_frame, frame_stat, calc_ssim);
frame_stat->quality_analysis_successful = true;
}
void VideoProcessor::WriteDecodedFrame(const I420BufferInterface& decoded_frame,
FrameWriter& frame_writer) {
int input_video_width = config_.codec_settings.width;
int input_video_height = config_.codec_settings.height;
rtc::scoped_refptr<I420Buffer> scaled_buffer;
const I420BufferInterface* scaled_frame;
if (decoded_frame.width() == input_video_width &&
decoded_frame.height() == input_video_height) {
scaled_frame = &decoded_frame;
} else {
EXPECT_DOUBLE_EQ(
static_cast<double>(input_video_width) / input_video_height,
static_cast<double>(decoded_frame.width()) / decoded_frame.height());
scaled_buffer = I420Buffer::Create(input_video_width, input_video_height);
scaled_buffer->ScaleFrom(decoded_frame);
scaled_frame = scaled_buffer.get();
}
// Ensure there is no padding.
RTC_CHECK_EQ(scaled_frame->StrideY(), input_video_width);
RTC_CHECK_EQ(scaled_frame->StrideU(), input_video_width / 2);
RTC_CHECK_EQ(scaled_frame->StrideV(), input_video_width / 2);
RTC_CHECK_EQ(3 * input_video_width * input_video_height / 2,
frame_writer.FrameLength());
RTC_CHECK(frame_writer.WriteFrame(scaled_frame->DataY()));
}
void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame,
size_t spatial_idx) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
// For the highest measurement accuracy of the decode time, the start/stop
// time recordings should wrap the Decode call as tightly as possible.
const int64_t decode_stop_ns = rtc::TimeNanos();
FrameStatistics* frame_stat =
stats_->GetFrameWithTimestamp(decoded_frame.timestamp(), spatial_idx);
const size_t frame_number = frame_stat->frame_number;
if (!first_decoded_frame_[spatial_idx]) {
for (size_t dropped_frame_number = last_decoded_frame_num_[spatial_idx] + 1;
dropped_frame_number < frame_number; ++dropped_frame_number) {
FrameStatistics* dropped_frame_stat =
stats_->GetFrame(dropped_frame_number, spatial_idx);
if (analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) {
// Calculate frame quality comparing input frame with last decoded one.
CalcFrameQuality(*last_decoded_frame_buffer_[spatial_idx],
dropped_frame_stat);
}
if (decoded_frame_writers_ != nullptr) {
// Fill drops with last decoded frame to make them look like freeze at
// playback and to keep decoded layers in sync.
WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx],
*decoded_frame_writers_->at(spatial_idx));
}
}
}
// Ensure that the decode order is monotonically increasing, within this
// simulcast/spatial layer.
RTC_CHECK(first_decoded_frame_[spatial_idx] ||
last_decoded_frame_num_[spatial_idx] < frame_number);
first_decoded_frame_[spatial_idx] = false;
last_decoded_frame_num_[spatial_idx] = frame_number;
// Update frame statistics.
frame_stat->decoding_successful = true;
frame_stat->decode_time_us =
GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns);
frame_stat->decoded_width = decoded_frame.width();
frame_stat->decoded_height = decoded_frame.height();
// Skip quality metrics calculation to not affect CPU usage.
if (analyze_frame_quality_ || decoded_frame_writers_) {
// Save last decoded frame to handle possible future drops.
rtc::scoped_refptr<I420BufferInterface> i420buffer =
decoded_frame.video_frame_buffer()->ToI420();
// Copy decoded frame to a buffer without padding/stride such that we can
// dump Y, U and V planes into a file in one shot.
last_decoded_frame_buffer_[spatial_idx] = I420Buffer::Copy(
i420buffer->width(), i420buffer->height(), i420buffer->DataY(),
i420buffer->StrideY(), i420buffer->DataU(), i420buffer->StrideU(),
i420buffer->DataV(), i420buffer->StrideV());
}
if (analyze_frame_quality_) {
CalcFrameQuality(*decoded_frame.video_frame_buffer()->ToI420(), frame_stat);
}
if (decoded_frame_writers_ != nullptr) {
WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx],
*decoded_frame_writers_->at(spatial_idx));
}
// Erase all buffered input frames that we have moved past for all
// simulcast/spatial layers. Never buffer more than
// `kMaxBufferedInputFrames` frames, to protect against long runs of
// consecutive frame drops for a particular layer.
const auto min_last_decoded_frame_num = std::min_element(
last_decoded_frame_num_.cbegin(), last_decoded_frame_num_.cend());
const size_t min_buffered_frame_num =
std::max(0, static_cast<int>(frame_number) - kMaxBufferedInputFrames + 1);
RTC_CHECK(min_last_decoded_frame_num != last_decoded_frame_num_.cend());
const auto input_frames_erase_before = input_frames_.lower_bound(
std::max(*min_last_decoded_frame_num, min_buffered_frame_num));
input_frames_.erase(input_frames_.cbegin(), input_frames_erase_before);
}
void VideoProcessor::DecodeFrame(const EncodedImage& encoded_image,
size_t spatial_idx) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
FrameStatistics* frame_stat =
stats_->GetFrameWithTimestamp(encoded_image.Timestamp(), spatial_idx);
frame_stat->decode_start_ns = rtc::TimeNanos();
frame_stat->decode_return_code =
decoders_->at(spatial_idx)->Decode(encoded_image, false, 0);
}
const webrtc::EncodedImage* VideoProcessor::BuildAndStoreSuperframe(
const EncodedImage& encoded_image,
const VideoCodecType codec,
size_t frame_number,
size_t spatial_idx,
bool inter_layer_predicted) {
// Should only be called for SVC.
RTC_CHECK_GT(config_.NumberOfSpatialLayers(), 1);
EncodedImage base_image;
RTC_CHECK_EQ(base_image.size(), 0);
// Each SVC layer is decoded with dedicated decoder. Find the nearest
// non-dropped base frame and merge it and current frame into superframe.
if (inter_layer_predicted) {
for (int base_idx = static_cast<int>(spatial_idx) - 1; base_idx >= 0;
--base_idx) {
EncodedImage lower_layer = merged_encoded_frames_.at(base_idx);
if (lower_layer.Timestamp() == encoded_image.Timestamp()) {
base_image = lower_layer;
break;
}
}
}
const size_t payload_size_bytes = base_image.size() + encoded_image.size();
auto buffer = EncodedImageBuffer::Create(payload_size_bytes);
if (base_image.size()) {
RTC_CHECK(base_image.data());
memcpy(buffer->data(), base_image.data(), base_image.size());
}
memcpy(buffer->data() + base_image.size(), encoded_image.data(),
encoded_image.size());
EncodedImage copied_image = encoded_image;
copied_image.SetEncodedData(buffer);
if (base_image.size())
copied_image._frameType = base_image._frameType;
// Replace previous EncodedImage for this spatial layer.
merged_encoded_frames_.at(spatial_idx) = std::move(copied_image);
return &merged_encoded_frames_.at(spatial_idx);
}
void VideoProcessor::Finalize() {
RTC_DCHECK_RUN_ON(&sequence_checker_);
RTC_DCHECK(!is_finalized_);
is_finalized_ = true;
if (!(analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) &&
decoded_frame_writers_ == nullptr) {
return;
}
for (size_t spatial_idx = 0; spatial_idx < num_simulcast_or_spatial_layers_;
++spatial_idx) {
if (first_decoded_frame_[spatial_idx]) {
continue; // No decoded frames on this spatial layer.
}
for (size_t dropped_frame_number = last_decoded_frame_num_[spatial_idx] + 1;
dropped_frame_number < last_inputed_frame_num_;
++dropped_frame_number) {
FrameStatistics* frame_stat =
stats_->GetFrame(dropped_frame_number, spatial_idx);
RTC_DCHECK(!frame_stat->decoding_successful);
if (analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) {
CalcFrameQuality(*last_decoded_frame_buffer_[spatial_idx], frame_stat);
}
if (decoded_frame_writers_ != nullptr) {
WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx],
*decoded_frame_writers_->at(spatial_idx));
}
}
}
}
} // namespace test
} // namespace webrtc