mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 05:40:42 +01:00

Second round of the new Windows ADM is now ready for review. Main changes are: Supports internal (automatic) restart of audio streams when an active audio stream disconnects (happens when a device is removed). Adds support for IAudioClient3 and IAudioClient2 for platforms which supports it (>Win8 and >Win10). Modifies the threading model to support restart "from the inside" on the native audio thread. Adds two new test methods for the ADM to emulate restart events or stream-switch events. Adds two new test methods to support rate conversion to ensure that audio can be tested in loopback even if devices runs at different sample rates. Added initial components for low-latency support. Verified that it works but disabled it with a flag for now. Bug: webrtc:9265 Change-Id: Ia8e577daabea6b433f2c2eabab4e46ce8added6a Reviewed-on: https://webrtc-review.googlesource.com/86020 Reviewed-by: Oskar Sundbom <ossu@webrtc.org> Commit-Queue: Henrik Andreassson <henrika@webrtc.org> Cr-Commit-Position: refs/heads/master@{#24578}
507 lines
18 KiB
C++
507 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
|
|
#include "modules/audio_device/audio_device_buffer.h"
|
|
|
|
#include "common_audio/signal_processing/include/signal_processing_library.h"
|
|
#include "modules/audio_device/audio_device_config.h"
|
|
#include "rtc_base/arraysize.h"
|
|
#include "rtc_base/bind.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/format_macros.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#include "rtc_base/timeutils.h"
|
|
#include "system_wrappers/include/metrics.h"
|
|
|
|
namespace webrtc {
|
|
|
|
static const char kTimerQueueName[] = "AudioDeviceBufferTimer";
|
|
|
|
// Time between two sucessive calls to LogStats().
|
|
static const size_t kTimerIntervalInSeconds = 10;
|
|
static const size_t kTimerIntervalInMilliseconds =
|
|
kTimerIntervalInSeconds * rtc::kNumMillisecsPerSec;
|
|
// Min time required to qualify an audio session as a "call". If playout or
|
|
// recording has been active for less than this time we will not store any
|
|
// logs or UMA stats but instead consider the call as too short.
|
|
static const size_t kMinValidCallTimeTimeInSeconds = 10;
|
|
static const size_t kMinValidCallTimeTimeInMilliseconds =
|
|
kMinValidCallTimeTimeInSeconds * rtc::kNumMillisecsPerSec;
|
|
#ifdef AUDIO_DEVICE_PLAYS_SINUS_TONE
|
|
static const double k2Pi = 6.28318530717959;
|
|
#endif
|
|
|
|
AudioDeviceBuffer::AudioDeviceBuffer()
|
|
: task_queue_(kTimerQueueName),
|
|
audio_transport_cb_(nullptr),
|
|
rec_sample_rate_(0),
|
|
play_sample_rate_(0),
|
|
rec_channels_(0),
|
|
play_channels_(0),
|
|
playing_(false),
|
|
recording_(false),
|
|
typing_status_(false),
|
|
play_delay_ms_(0),
|
|
rec_delay_ms_(0),
|
|
num_stat_reports_(0),
|
|
last_timer_task_time_(0),
|
|
rec_stat_count_(0),
|
|
play_stat_count_(0),
|
|
play_start_time_(0),
|
|
only_silence_recorded_(true),
|
|
log_stats_(false) {
|
|
RTC_LOG(INFO) << "AudioDeviceBuffer::ctor";
|
|
#ifdef AUDIO_DEVICE_PLAYS_SINUS_TONE
|
|
phase_ = 0.0;
|
|
RTC_LOG(WARNING) << "AUDIO_DEVICE_PLAYS_SINUS_TONE is defined!";
|
|
#endif
|
|
WebRtcSpl_Init();
|
|
playout_thread_checker_.DetachFromThread();
|
|
recording_thread_checker_.DetachFromThread();
|
|
}
|
|
|
|
AudioDeviceBuffer::~AudioDeviceBuffer() {
|
|
RTC_DCHECK_RUN_ON(&main_thread_checker_);
|
|
RTC_DCHECK(!playing_);
|
|
RTC_DCHECK(!recording_);
|
|
RTC_LOG(INFO) << "AudioDeviceBuffer::~dtor";
|
|
}
|
|
|
|
int32_t AudioDeviceBuffer::RegisterAudioCallback(
|
|
AudioTransport* audio_callback) {
|
|
RTC_DCHECK_RUN_ON(&main_thread_checker_);
|
|
RTC_LOG(INFO) << __FUNCTION__;
|
|
if (playing_ || recording_) {
|
|
RTC_LOG(LS_ERROR) << "Failed to set audio transport since media was active";
|
|
return -1;
|
|
}
|
|
audio_transport_cb_ = audio_callback;
|
|
return 0;
|
|
}
|
|
|
|
void AudioDeviceBuffer::StartPlayout() {
|
|
RTC_DCHECK_RUN_ON(&main_thread_checker_);
|
|
// TODO(henrika): allow for usage of DCHECK(!playing_) here instead. Today the
|
|
// ADM allows calling Start(), Start() by ignoring the second call but it
|
|
// makes more sense to only allow one call.
|
|
if (playing_) {
|
|
return;
|
|
}
|
|
RTC_LOG(INFO) << __FUNCTION__;
|
|
playout_thread_checker_.DetachFromThread();
|
|
// Clear members tracking playout stats and do it on the task queue.
|
|
task_queue_.PostTask([this] { ResetPlayStats(); });
|
|
// Start a periodic timer based on task queue if not already done by the
|
|
// recording side.
|
|
if (!recording_) {
|
|
StartPeriodicLogging();
|
|
}
|
|
const int64_t now_time = rtc::TimeMillis();
|
|
// Clear members that are only touched on the main (creating) thread.
|
|
play_start_time_ = now_time;
|
|
playing_ = true;
|
|
}
|
|
|
|
void AudioDeviceBuffer::StartRecording() {
|
|
RTC_DCHECK_RUN_ON(&main_thread_checker_);
|
|
if (recording_) {
|
|
return;
|
|
}
|
|
RTC_LOG(INFO) << __FUNCTION__;
|
|
recording_thread_checker_.DetachFromThread();
|
|
// Clear members tracking recording stats and do it on the task queue.
|
|
task_queue_.PostTask([this] { ResetRecStats(); });
|
|
// Start a periodic timer based on task queue if not already done by the
|
|
// playout side.
|
|
if (!playing_) {
|
|
StartPeriodicLogging();
|
|
}
|
|
// Clear members that will be touched on the main (creating) thread.
|
|
rec_start_time_ = rtc::TimeMillis();
|
|
recording_ = true;
|
|
// And finally a member which can be modified on the native audio thread.
|
|
// It is safe to do so since we know by design that the owning ADM has not
|
|
// yet started the native audio recording.
|
|
only_silence_recorded_ = true;
|
|
}
|
|
|
|
void AudioDeviceBuffer::StopPlayout() {
|
|
RTC_DCHECK_RUN_ON(&main_thread_checker_);
|
|
if (!playing_) {
|
|
return;
|
|
}
|
|
RTC_LOG(INFO) << __FUNCTION__;
|
|
playing_ = false;
|
|
// Stop periodic logging if no more media is active.
|
|
if (!recording_) {
|
|
StopPeriodicLogging();
|
|
}
|
|
RTC_LOG(INFO) << "total playout time: " << rtc::TimeSince(play_start_time_);
|
|
}
|
|
|
|
void AudioDeviceBuffer::StopRecording() {
|
|
RTC_DCHECK_RUN_ON(&main_thread_checker_);
|
|
if (!recording_) {
|
|
return;
|
|
}
|
|
RTC_LOG(INFO) << __FUNCTION__;
|
|
recording_ = false;
|
|
// Stop periodic logging if no more media is active.
|
|
if (!playing_) {
|
|
StopPeriodicLogging();
|
|
}
|
|
// Add UMA histogram to keep track of the case when only zeros have been
|
|
// recorded. Measurements (max of absolute level) are taken twice per second,
|
|
// which means that if e.g 10 seconds of audio has been recorded, a total of
|
|
// 20 level estimates must all be identical to zero to trigger the histogram.
|
|
// |only_silence_recorded_| can only be cleared on the native audio thread
|
|
// that drives audio capture but we know by design that the audio has stopped
|
|
// when this method is called, hence there should not be aby conflicts. Also,
|
|
// the fact that |only_silence_recorded_| can be affected during the complete
|
|
// call makes chances of conflicts with potentially one last callback very
|
|
// small.
|
|
const size_t time_since_start = rtc::TimeSince(rec_start_time_);
|
|
if (time_since_start > kMinValidCallTimeTimeInMilliseconds) {
|
|
const int only_zeros = static_cast<int>(only_silence_recorded_);
|
|
RTC_HISTOGRAM_BOOLEAN("WebRTC.Audio.RecordedOnlyZeros", only_zeros);
|
|
RTC_LOG(INFO) << "HISTOGRAM(WebRTC.Audio.RecordedOnlyZeros): "
|
|
<< only_zeros;
|
|
}
|
|
RTC_LOG(INFO) << "total recording time: " << time_since_start;
|
|
}
|
|
|
|
int32_t AudioDeviceBuffer::SetRecordingSampleRate(uint32_t fsHz) {
|
|
RTC_LOG(INFO) << "SetRecordingSampleRate(" << fsHz << ")";
|
|
rec_sample_rate_ = fsHz;
|
|
return 0;
|
|
}
|
|
|
|
int32_t AudioDeviceBuffer::SetPlayoutSampleRate(uint32_t fsHz) {
|
|
RTC_LOG(INFO) << "SetPlayoutSampleRate(" << fsHz << ")";
|
|
play_sample_rate_ = fsHz;
|
|
return 0;
|
|
}
|
|
|
|
uint32_t AudioDeviceBuffer::RecordingSampleRate() const {
|
|
return rec_sample_rate_;
|
|
}
|
|
|
|
uint32_t AudioDeviceBuffer::PlayoutSampleRate() const {
|
|
return play_sample_rate_;
|
|
}
|
|
|
|
int32_t AudioDeviceBuffer::SetRecordingChannels(size_t channels) {
|
|
RTC_LOG(INFO) << "SetRecordingChannels(" << channels << ")";
|
|
rec_channels_ = channels;
|
|
return 0;
|
|
}
|
|
|
|
int32_t AudioDeviceBuffer::SetPlayoutChannels(size_t channels) {
|
|
RTC_LOG(INFO) << "SetPlayoutChannels(" << channels << ")";
|
|
play_channels_ = channels;
|
|
return 0;
|
|
}
|
|
|
|
size_t AudioDeviceBuffer::RecordingChannels() const {
|
|
return rec_channels_;
|
|
}
|
|
|
|
size_t AudioDeviceBuffer::PlayoutChannels() const {
|
|
return play_channels_;
|
|
}
|
|
|
|
int32_t AudioDeviceBuffer::SetTypingStatus(bool typing_status) {
|
|
RTC_DCHECK_RUN_ON(&recording_thread_checker_);
|
|
typing_status_ = typing_status;
|
|
return 0;
|
|
}
|
|
|
|
void AudioDeviceBuffer::NativeAudioPlayoutInterrupted() {
|
|
RTC_DCHECK(main_thread_checker_.CalledOnValidThread());
|
|
playout_thread_checker_.DetachFromThread();
|
|
}
|
|
|
|
void AudioDeviceBuffer::NativeAudioRecordingInterrupted() {
|
|
RTC_DCHECK(main_thread_checker_.CalledOnValidThread());
|
|
recording_thread_checker_.DetachFromThread();
|
|
}
|
|
|
|
void AudioDeviceBuffer::SetVQEData(int play_delay_ms, int rec_delay_ms) {
|
|
RTC_DCHECK_RUN_ON(&recording_thread_checker_);
|
|
play_delay_ms_ = play_delay_ms;
|
|
rec_delay_ms_ = rec_delay_ms;
|
|
}
|
|
|
|
int32_t AudioDeviceBuffer::SetRecordedBuffer(const void* audio_buffer,
|
|
size_t samples_per_channel) {
|
|
RTC_DCHECK_RUN_ON(&recording_thread_checker_);
|
|
// Copy the complete input buffer to the local buffer.
|
|
const size_t old_size = rec_buffer_.size();
|
|
rec_buffer_.SetData(static_cast<const int16_t*>(audio_buffer),
|
|
rec_channels_ * samples_per_channel);
|
|
// Keep track of the size of the recording buffer. Only updated when the
|
|
// size changes, which is a rare event.
|
|
if (old_size != rec_buffer_.size()) {
|
|
RTC_LOG(LS_INFO) << "Size of recording buffer: " << rec_buffer_.size();
|
|
}
|
|
|
|
// Derive a new level value twice per second and check if it is non-zero.
|
|
int16_t max_abs = 0;
|
|
RTC_DCHECK_LT(rec_stat_count_, 50);
|
|
if (++rec_stat_count_ >= 50) {
|
|
// Returns the largest absolute value in a signed 16-bit vector.
|
|
max_abs = WebRtcSpl_MaxAbsValueW16(rec_buffer_.data(), rec_buffer_.size());
|
|
rec_stat_count_ = 0;
|
|
// Set |only_silence_recorded_| to false as soon as at least one detection
|
|
// of a non-zero audio packet is found. It can only be restored to true
|
|
// again by restarting the call.
|
|
if (max_abs > 0) {
|
|
only_silence_recorded_ = false;
|
|
}
|
|
}
|
|
// Update recording stats which is used as base for periodic logging of the
|
|
// audio input state.
|
|
UpdateRecStats(max_abs, samples_per_channel);
|
|
return 0;
|
|
}
|
|
|
|
int32_t AudioDeviceBuffer::DeliverRecordedData() {
|
|
RTC_DCHECK_RUN_ON(&recording_thread_checker_);
|
|
if (!audio_transport_cb_) {
|
|
RTC_LOG(LS_WARNING) << "Invalid audio transport";
|
|
return 0;
|
|
}
|
|
const size_t frames = rec_buffer_.size() / rec_channels_;
|
|
const size_t bytes_per_frame = rec_channels_ * sizeof(int16_t);
|
|
uint32_t new_mic_level_dummy = 0;
|
|
uint32_t total_delay_ms = play_delay_ms_ + rec_delay_ms_;
|
|
int32_t res = audio_transport_cb_->RecordedDataIsAvailable(
|
|
rec_buffer_.data(), frames, bytes_per_frame, rec_channels_,
|
|
rec_sample_rate_, total_delay_ms, 0, 0, typing_status_,
|
|
new_mic_level_dummy);
|
|
if (res == -1) {
|
|
RTC_LOG(LS_ERROR) << "RecordedDataIsAvailable() failed";
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int32_t AudioDeviceBuffer::RequestPlayoutData(size_t samples_per_channel) {
|
|
RTC_DCHECK_RUN_ON(&playout_thread_checker_);
|
|
// The consumer can change the requested size on the fly and we therefore
|
|
// resize the buffer accordingly. Also takes place at the first call to this
|
|
// method.
|
|
const size_t total_samples = play_channels_ * samples_per_channel;
|
|
if (play_buffer_.size() != total_samples) {
|
|
play_buffer_.SetSize(total_samples);
|
|
RTC_LOG(LS_INFO) << "Size of playout buffer: " << play_buffer_.size();
|
|
}
|
|
|
|
size_t num_samples_out(0);
|
|
// It is currently supported to start playout without a valid audio
|
|
// transport object. Leads to warning and silence.
|
|
if (!audio_transport_cb_) {
|
|
RTC_LOG(LS_WARNING) << "Invalid audio transport";
|
|
return 0;
|
|
}
|
|
|
|
// Retrieve new 16-bit PCM audio data using the audio transport instance.
|
|
int64_t elapsed_time_ms = -1;
|
|
int64_t ntp_time_ms = -1;
|
|
const size_t bytes_per_frame = play_channels_ * sizeof(int16_t);
|
|
uint32_t res = audio_transport_cb_->NeedMorePlayData(
|
|
samples_per_channel, bytes_per_frame, play_channels_, play_sample_rate_,
|
|
play_buffer_.data(), num_samples_out, &elapsed_time_ms, &ntp_time_ms);
|
|
if (res != 0) {
|
|
RTC_LOG(LS_ERROR) << "NeedMorePlayData() failed";
|
|
}
|
|
|
|
// Derive a new level value twice per second.
|
|
int16_t max_abs = 0;
|
|
RTC_DCHECK_LT(play_stat_count_, 50);
|
|
if (++play_stat_count_ >= 50) {
|
|
// Returns the largest absolute value in a signed 16-bit vector.
|
|
max_abs =
|
|
WebRtcSpl_MaxAbsValueW16(play_buffer_.data(), play_buffer_.size());
|
|
play_stat_count_ = 0;
|
|
}
|
|
// Update playout stats which is used as base for periodic logging of the
|
|
// audio output state.
|
|
UpdatePlayStats(max_abs, num_samples_out / play_channels_);
|
|
return static_cast<int32_t>(num_samples_out / play_channels_);
|
|
}
|
|
|
|
int32_t AudioDeviceBuffer::GetPlayoutData(void* audio_buffer) {
|
|
RTC_DCHECK_RUN_ON(&playout_thread_checker_);
|
|
RTC_DCHECK_GT(play_buffer_.size(), 0);
|
|
#ifdef AUDIO_DEVICE_PLAYS_SINUS_TONE
|
|
const double phase_increment =
|
|
k2Pi * 440.0 / static_cast<double>(play_sample_rate_);
|
|
int16_t* destination_r = reinterpret_cast<int16_t*>(audio_buffer);
|
|
if (play_channels_ == 1) {
|
|
for (size_t i = 0; i < play_buffer_.size(); ++i) {
|
|
destination_r[i] = static_cast<int16_t>((sin(phase_) * (1 << 14)));
|
|
phase_ += phase_increment;
|
|
}
|
|
} else if (play_channels_ == 2) {
|
|
for (size_t i = 0; i < play_buffer_.size() / 2; ++i) {
|
|
destination_r[2 * i] = destination_r[2 * i + 1] =
|
|
static_cast<int16_t>((sin(phase_) * (1 << 14)));
|
|
phase_ += phase_increment;
|
|
}
|
|
}
|
|
#else
|
|
memcpy(audio_buffer, play_buffer_.data(),
|
|
play_buffer_.size() * sizeof(int16_t));
|
|
#endif
|
|
// Return samples per channel or number of frames.
|
|
return static_cast<int32_t>(play_buffer_.size() / play_channels_);
|
|
}
|
|
|
|
void AudioDeviceBuffer::StartPeriodicLogging() {
|
|
task_queue_.PostTask(rtc::Bind(&AudioDeviceBuffer::LogStats, this,
|
|
AudioDeviceBuffer::LOG_START));
|
|
}
|
|
|
|
void AudioDeviceBuffer::StopPeriodicLogging() {
|
|
task_queue_.PostTask(rtc::Bind(&AudioDeviceBuffer::LogStats, this,
|
|
AudioDeviceBuffer::LOG_STOP));
|
|
}
|
|
|
|
void AudioDeviceBuffer::LogStats(LogState state) {
|
|
RTC_DCHECK_RUN_ON(&task_queue_);
|
|
int64_t now_time = rtc::TimeMillis();
|
|
|
|
if (state == AudioDeviceBuffer::LOG_START) {
|
|
// Reset counters at start. We will not add any logging in this state but
|
|
// the timer will started by posting a new (delayed) task.
|
|
num_stat_reports_ = 0;
|
|
last_timer_task_time_ = now_time;
|
|
log_stats_ = true;
|
|
} else if (state == AudioDeviceBuffer::LOG_STOP) {
|
|
// Stop logging and posting new tasks.
|
|
log_stats_ = false;
|
|
} else if (state == AudioDeviceBuffer::LOG_ACTIVE) {
|
|
// Keep logging unless logging was disabled while task was posted.
|
|
}
|
|
|
|
// Avoid adding more logs since we are in STOP mode.
|
|
if (!log_stats_) {
|
|
return;
|
|
}
|
|
|
|
int64_t next_callback_time = now_time + kTimerIntervalInMilliseconds;
|
|
int64_t time_since_last = rtc::TimeDiff(now_time, last_timer_task_time_);
|
|
last_timer_task_time_ = now_time;
|
|
|
|
Stats stats;
|
|
{
|
|
rtc::CritScope cs(&lock_);
|
|
stats = stats_;
|
|
stats_.max_rec_level = 0;
|
|
stats_.max_play_level = 0;
|
|
}
|
|
|
|
// Cache current sample rate from atomic members.
|
|
const uint32_t rec_sample_rate = rec_sample_rate_;
|
|
const uint32_t play_sample_rate = play_sample_rate_;
|
|
|
|
// Log the latest statistics but skip the first two rounds just after state
|
|
// was set to LOG_START to ensure that we have at least one full stable
|
|
// 10-second interval for sample-rate estimation. Hence, first printed log
|
|
// will be after ~20 seconds.
|
|
if (++num_stat_reports_ > 2 && time_since_last > 0) {
|
|
uint32_t diff_samples = stats.rec_samples - last_stats_.rec_samples;
|
|
float rate = diff_samples / (static_cast<float>(time_since_last) / 1000.0);
|
|
uint32_t abs_diff_rate_in_percent = 0;
|
|
if (rec_sample_rate > 0) {
|
|
abs_diff_rate_in_percent = static_cast<uint32_t>(
|
|
0.5f +
|
|
((100.0f * std::abs(rate - rec_sample_rate)) / rec_sample_rate));
|
|
RTC_HISTOGRAM_PERCENTAGE("WebRTC.Audio.RecordSampleRateOffsetInPercent",
|
|
abs_diff_rate_in_percent);
|
|
}
|
|
RTC_LOG(INFO) << "[REC : " << time_since_last << "msec, "
|
|
<< rec_sample_rate / 1000 << "kHz] callbacks: "
|
|
<< stats.rec_callbacks - last_stats_.rec_callbacks << ", "
|
|
<< "samples: " << diff_samples << ", "
|
|
<< "rate: " << static_cast<int>(rate + 0.5) << ", "
|
|
<< "rate diff: " << abs_diff_rate_in_percent << "%, "
|
|
<< "level: " << stats.max_rec_level;
|
|
|
|
diff_samples = stats.play_samples - last_stats_.play_samples;
|
|
rate = diff_samples / (static_cast<float>(time_since_last) / 1000.0);
|
|
abs_diff_rate_in_percent = 0;
|
|
if (play_sample_rate > 0) {
|
|
abs_diff_rate_in_percent = static_cast<uint32_t>(
|
|
0.5f +
|
|
((100.0f * std::abs(rate - play_sample_rate)) / play_sample_rate));
|
|
RTC_HISTOGRAM_PERCENTAGE("WebRTC.Audio.PlayoutSampleRateOffsetInPercent",
|
|
abs_diff_rate_in_percent);
|
|
}
|
|
RTC_LOG(INFO) << "[PLAY: " << time_since_last << "msec, "
|
|
<< play_sample_rate / 1000 << "kHz] callbacks: "
|
|
<< stats.play_callbacks - last_stats_.play_callbacks << ", "
|
|
<< "samples: " << diff_samples << ", "
|
|
<< "rate: " << static_cast<int>(rate + 0.5) << ", "
|
|
<< "rate diff: " << abs_diff_rate_in_percent << "%, "
|
|
<< "level: " << stats.max_play_level;
|
|
}
|
|
last_stats_ = stats;
|
|
|
|
int64_t time_to_wait_ms = next_callback_time - rtc::TimeMillis();
|
|
RTC_DCHECK_GT(time_to_wait_ms, 0) << "Invalid timer interval";
|
|
|
|
// Keep posting new (delayed) tasks until state is changed to kLogStop.
|
|
task_queue_.PostDelayedTask(rtc::Bind(&AudioDeviceBuffer::LogStats, this,
|
|
AudioDeviceBuffer::LOG_ACTIVE),
|
|
time_to_wait_ms);
|
|
}
|
|
|
|
void AudioDeviceBuffer::ResetRecStats() {
|
|
RTC_DCHECK_RUN_ON(&task_queue_);
|
|
last_stats_.ResetRecStats();
|
|
rtc::CritScope cs(&lock_);
|
|
stats_.ResetRecStats();
|
|
}
|
|
|
|
void AudioDeviceBuffer::ResetPlayStats() {
|
|
RTC_DCHECK_RUN_ON(&task_queue_);
|
|
last_stats_.ResetPlayStats();
|
|
rtc::CritScope cs(&lock_);
|
|
stats_.ResetPlayStats();
|
|
}
|
|
|
|
void AudioDeviceBuffer::UpdateRecStats(int16_t max_abs,
|
|
size_t samples_per_channel) {
|
|
RTC_DCHECK_RUN_ON(&recording_thread_checker_);
|
|
rtc::CritScope cs(&lock_);
|
|
++stats_.rec_callbacks;
|
|
stats_.rec_samples += samples_per_channel;
|
|
if (max_abs > stats_.max_rec_level) {
|
|
stats_.max_rec_level = max_abs;
|
|
}
|
|
}
|
|
|
|
void AudioDeviceBuffer::UpdatePlayStats(int16_t max_abs,
|
|
size_t samples_per_channel) {
|
|
RTC_DCHECK_RUN_ON(&playout_thread_checker_);
|
|
rtc::CritScope cs(&lock_);
|
|
++stats_.play_callbacks;
|
|
stats_.play_samples += samples_per_channel;
|
|
if (max_abs > stats_.max_play_level) {
|
|
stats_.max_play_level = max_abs;
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|