webrtc/modules/audio_coding/acm2/audio_coding_module.cc
Lionel Koenig a656b9d781 Use absolute capture timestamp from the beginning of payload
This ensure the absolute capture timestamp from the first audio sample
encoded in the payload is used for the corresponding rtp header.

Bug: webrtc:42226041
Change-Id: Ib8f2e3a5df5c82c5806171bd5b36a26d92fbea72
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/349265
Commit-Queue: Lionel Koenig <lionelk@webrtc.org>
Reviewed-by: Jakob Ivarsson‎ <jakobi@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#42281}
2024-05-13 08:10:56 +00:00

539 lines
19 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/include/audio_coding_module.h"
#include <algorithm>
#include <cstdint>
#include "absl/strings/match.h"
#include "absl/strings/string_view.h"
#include "api/array_view.h"
#include "modules/audio_coding/acm2/acm_remixing.h"
#include "modules/audio_coding/acm2/acm_resampler.h"
#include "modules/include/module_common_types.h"
#include "modules/include/module_common_types_public.h"
#include "rtc_base/buffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/synchronization/mutex.h"
#include "rtc_base/thread_annotations.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
// Initial size for the buffer in InputBuffer. This matches 6 channels of 10 ms
// 48 kHz data.
constexpr size_t kInitialInputDataBufferSize = 6 * 480;
constexpr int32_t kMaxInputSampleRateHz = 192000;
class AudioCodingModuleImpl final : public AudioCodingModule {
public:
explicit AudioCodingModuleImpl();
~AudioCodingModuleImpl() override;
/////////////////////////////////////////
// Sender
//
void ModifyEncoder(rtc::FunctionView<void(std::unique_ptr<AudioEncoder>*)>
modifier) override;
// Register a transport callback which will be
// called to deliver the encoded buffers.
int RegisterTransportCallback(AudioPacketizationCallback* transport) override;
// Add 10 ms of raw (PCM) audio data to the encoder.
int Add10MsData(const AudioFrame& audio_frame) override;
/////////////////////////////////////////
// (FEC) Forward Error Correction (codec internal)
//
// Set target packet loss rate
int SetPacketLossRate(int loss_rate) override;
/////////////////////////////////////////
// Statistics
//
ANAStats GetANAStats() const override;
int GetTargetBitrate() const override;
private:
struct InputData {
InputData() : buffer(kInitialInputDataBufferSize) {}
uint32_t input_timestamp;
const int16_t* audio;
size_t length_per_channel;
size_t audio_channel;
// If a re-mix is required (up or down), this buffer will store a re-mixed
// version of the input.
std::vector<int16_t> buffer;
};
InputData input_data_ RTC_GUARDED_BY(acm_mutex_);
// This member class writes values to the named UMA histogram, but only if
// the value has changed since the last time (and always for the first call).
class ChangeLogger {
public:
explicit ChangeLogger(absl::string_view histogram_name)
: histogram_name_(histogram_name) {}
// Logs the new value if it is different from the last logged value, or if
// this is the first call.
void MaybeLog(int value);
private:
int last_value_ = 0;
int first_time_ = true;
const std::string histogram_name_;
};
int Add10MsDataInternal(const AudioFrame& audio_frame, InputData* input_data)
RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_mutex_);
// TODO(bugs.webrtc.org/10739): change `absolute_capture_timestamp_ms` to
// int64_t when it always receives a valid value.
int Encode(const InputData& input_data,
absl::optional<int64_t> absolute_capture_timestamp_ms)
RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_mutex_);
bool HaveValidEncoder(absl::string_view caller_name) const
RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_mutex_);
// Preprocessing of input audio, including resampling and down-mixing if
// required, before pushing audio into encoder's buffer.
//
// in_frame: input audio-frame
// ptr_out: pointer to output audio_frame. If no preprocessing is required
// `ptr_out` will be pointing to `in_frame`, otherwise pointing to
// `preprocess_frame_`.
//
// Return value:
// -1: if encountering an error.
// 0: otherwise.
int PreprocessToAddData(const AudioFrame& in_frame,
const AudioFrame** ptr_out)
RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_mutex_);
// Change required states after starting to receive the codec corresponding
// to `index`.
int UpdateUponReceivingCodec(int index);
mutable Mutex acm_mutex_;
rtc::Buffer encode_buffer_ RTC_GUARDED_BY(acm_mutex_);
uint32_t expected_codec_ts_ RTC_GUARDED_BY(acm_mutex_);
uint32_t expected_in_ts_ RTC_GUARDED_BY(acm_mutex_);
acm2::ACMResampler resampler_ RTC_GUARDED_BY(acm_mutex_);
ChangeLogger bitrate_logger_ RTC_GUARDED_BY(acm_mutex_);
// Current encoder stack, provided by a call to RegisterEncoder.
std::unique_ptr<AudioEncoder> encoder_stack_ RTC_GUARDED_BY(acm_mutex_);
// This is to keep track of CN instances where we can send DTMFs.
uint8_t previous_pltype_ RTC_GUARDED_BY(acm_mutex_);
AudioFrame preprocess_frame_ RTC_GUARDED_BY(acm_mutex_);
bool first_10ms_data_ RTC_GUARDED_BY(acm_mutex_);
bool first_frame_ RTC_GUARDED_BY(acm_mutex_);
uint32_t last_timestamp_ RTC_GUARDED_BY(acm_mutex_);
uint32_t last_rtp_timestamp_ RTC_GUARDED_BY(acm_mutex_);
absl::optional<int64_t> absolute_capture_timestamp_ms_
RTC_GUARDED_BY(acm_mutex_);
Mutex callback_mutex_;
AudioPacketizationCallback* packetization_callback_
RTC_GUARDED_BY(callback_mutex_);
int codec_histogram_bins_log_[static_cast<size_t>(
AudioEncoder::CodecType::kMaxLoggedAudioCodecTypes)];
int number_of_consecutive_empty_packets_;
};
// Adds a codec usage sample to the histogram.
void UpdateCodecTypeHistogram(size_t codec_type) {
RTC_HISTOGRAM_ENUMERATION(
"WebRTC.Audio.Encoder.CodecType", static_cast<int>(codec_type),
static_cast<int>(
webrtc::AudioEncoder::CodecType::kMaxLoggedAudioCodecTypes));
}
void AudioCodingModuleImpl::ChangeLogger::MaybeLog(int value) {
if (value != last_value_ || first_time_) {
first_time_ = false;
last_value_ = value;
RTC_HISTOGRAM_COUNTS_SPARSE_100(histogram_name_, value);
}
}
AudioCodingModuleImpl::AudioCodingModuleImpl()
: expected_codec_ts_(0xD87F3F9F),
expected_in_ts_(0xD87F3F9F),
bitrate_logger_("WebRTC.Audio.TargetBitrateInKbps"),
encoder_stack_(nullptr),
previous_pltype_(255),
first_10ms_data_(false),
first_frame_(true),
packetization_callback_(NULL),
codec_histogram_bins_log_(),
number_of_consecutive_empty_packets_(0) {
RTC_LOG(LS_INFO) << "Created";
}
AudioCodingModuleImpl::~AudioCodingModuleImpl() = default;
int32_t AudioCodingModuleImpl::Encode(
const InputData& input_data,
absl::optional<int64_t> absolute_capture_timestamp_ms) {
// TODO(bugs.webrtc.org/10739): add dcheck that
// `audio_frame.absolute_capture_timestamp_ms()` always has a value.
AudioEncoder::EncodedInfo encoded_info;
uint8_t previous_pltype;
// Check if there is an encoder before.
if (!HaveValidEncoder("Process"))
return -1;
if (!first_frame_) {
RTC_DCHECK(IsNewerTimestamp(input_data.input_timestamp, last_timestamp_))
<< "Time should not move backwards";
}
// Scale the timestamp to the codec's RTP timestamp rate.
uint32_t rtp_timestamp =
first_frame_
? input_data.input_timestamp
: last_rtp_timestamp_ +
rtc::dchecked_cast<uint32_t>(rtc::CheckedDivExact(
int64_t{input_data.input_timestamp - last_timestamp_} *
encoder_stack_->RtpTimestampRateHz(),
int64_t{encoder_stack_->SampleRateHz()}));
last_timestamp_ = input_data.input_timestamp;
last_rtp_timestamp_ = rtp_timestamp;
first_frame_ = false;
if (!absolute_capture_timestamp_ms_.has_value()) {
absolute_capture_timestamp_ms_ = absolute_capture_timestamp_ms;
}
// Clear the buffer before reuse - encoded data will get appended.
encode_buffer_.Clear();
encoded_info = encoder_stack_->Encode(
rtp_timestamp,
rtc::ArrayView<const int16_t>(
input_data.audio,
input_data.audio_channel * input_data.length_per_channel),
&encode_buffer_);
bitrate_logger_.MaybeLog(encoder_stack_->GetTargetBitrate() / 1000);
if (encode_buffer_.size() == 0 && !encoded_info.send_even_if_empty) {
// Not enough data.
return 0;
}
previous_pltype = previous_pltype_; // Read it while we have the critsect.
// Log codec type to histogram once every 500 packets.
if (encoded_info.encoded_bytes == 0) {
++number_of_consecutive_empty_packets_;
} else {
size_t codec_type = static_cast<size_t>(encoded_info.encoder_type);
codec_histogram_bins_log_[codec_type] +=
number_of_consecutive_empty_packets_ + 1;
number_of_consecutive_empty_packets_ = 0;
if (codec_histogram_bins_log_[codec_type] >= 500) {
codec_histogram_bins_log_[codec_type] -= 500;
UpdateCodecTypeHistogram(codec_type);
}
}
AudioFrameType frame_type;
if (encode_buffer_.size() == 0 && encoded_info.send_even_if_empty) {
frame_type = AudioFrameType::kEmptyFrame;
encoded_info.payload_type = previous_pltype;
} else {
RTC_DCHECK_GT(encode_buffer_.size(), 0);
frame_type = encoded_info.speech ? AudioFrameType::kAudioFrameSpeech
: AudioFrameType::kAudioFrameCN;
}
{
MutexLock lock(&callback_mutex_);
if (packetization_callback_) {
packetization_callback_->SendData(
frame_type, encoded_info.payload_type, encoded_info.encoded_timestamp,
encode_buffer_.data(), encode_buffer_.size(),
absolute_capture_timestamp_ms_.value_or(-1));
}
}
absolute_capture_timestamp_ms_ = absl::nullopt;
previous_pltype_ = encoded_info.payload_type;
return static_cast<int32_t>(encode_buffer_.size());
}
/////////////////////////////////////////
// Sender
//
void AudioCodingModuleImpl::ModifyEncoder(
rtc::FunctionView<void(std::unique_ptr<AudioEncoder>*)> modifier) {
MutexLock lock(&acm_mutex_);
modifier(&encoder_stack_);
}
// Register a transport callback which will be called to deliver
// the encoded buffers.
int AudioCodingModuleImpl::RegisterTransportCallback(
AudioPacketizationCallback* transport) {
MutexLock lock(&callback_mutex_);
packetization_callback_ = transport;
return 0;
}
// Add 10MS of raw (PCM) audio data to the encoder.
int AudioCodingModuleImpl::Add10MsData(const AudioFrame& audio_frame) {
MutexLock lock(&acm_mutex_);
int r = Add10MsDataInternal(audio_frame, &input_data_);
// TODO(bugs.webrtc.org/10739): add dcheck that
// `audio_frame.absolute_capture_timestamp_ms()` always has a value.
return r < 0
? r
: Encode(input_data_, audio_frame.absolute_capture_timestamp_ms());
}
int AudioCodingModuleImpl::Add10MsDataInternal(const AudioFrame& audio_frame,
InputData* input_data) {
if (audio_frame.samples_per_channel_ == 0) {
RTC_DCHECK_NOTREACHED();
RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, payload length is zero";
return -1;
}
if (audio_frame.sample_rate_hz_ > kMaxInputSampleRateHz) {
RTC_DCHECK_NOTREACHED();
RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, input frequency not valid";
return -1;
}
// If the length and frequency matches. We currently just support raw PCM.
if (static_cast<size_t>(audio_frame.sample_rate_hz_ / 100) !=
audio_frame.samples_per_channel_) {
RTC_LOG(LS_ERROR)
<< "Cannot Add 10 ms audio, input frequency and length doesn't match";
return -1;
}
if (audio_frame.num_channels_ != 1 && audio_frame.num_channels_ != 2 &&
audio_frame.num_channels_ != 4 && audio_frame.num_channels_ != 6 &&
audio_frame.num_channels_ != 8) {
RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, invalid number of channels.";
return -1;
}
// Do we have a codec registered?
if (!HaveValidEncoder("Add10MsData")) {
return -1;
}
const AudioFrame* ptr_frame;
// Perform a resampling, also down-mix if it is required and can be
// performed before resampling (a down mix prior to resampling will take
// place if both primary and secondary encoders are mono and input is in
// stereo).
if (PreprocessToAddData(audio_frame, &ptr_frame) < 0) {
return -1;
}
// Check whether we need an up-mix or down-mix?
const size_t current_num_channels = encoder_stack_->NumChannels();
const bool same_num_channels =
ptr_frame->num_channels_ == current_num_channels;
// TODO(yujo): Skip encode of muted frames.
input_data->input_timestamp = ptr_frame->timestamp_;
input_data->length_per_channel = ptr_frame->samples_per_channel_;
input_data->audio_channel = current_num_channels;
if (!same_num_channels) {
// Remixes the input frame to the output data and in the process resize the
// output data if needed.
ReMixFrame(*ptr_frame, current_num_channels, &input_data->buffer);
// For pushing data to primary, point the `ptr_audio` to correct buffer.
input_data->audio = input_data->buffer.data();
RTC_DCHECK_GE(input_data->buffer.size(),
input_data->length_per_channel * input_data->audio_channel);
} else {
// When adding data to encoders this pointer is pointing to an audio buffer
// with correct number of channels.
input_data->audio = ptr_frame->data();
}
return 0;
}
// Perform a resampling and down-mix if required. We down-mix only if
// encoder is mono and input is stereo. In case of dual-streaming, both
// encoders has to be mono for down-mix to take place.
// |*ptr_out| will point to the pre-processed audio-frame. If no pre-processing
// is required, |*ptr_out| points to `in_frame`.
// TODO(yujo): Make this more efficient for muted frames.
int AudioCodingModuleImpl::PreprocessToAddData(const AudioFrame& in_frame,
const AudioFrame** ptr_out) {
const bool resample =
in_frame.sample_rate_hz_ != encoder_stack_->SampleRateHz();
// This variable is true if primary codec and secondary codec (if exists)
// are both mono and input is stereo.
// TODO(henrik.lundin): This condition should probably be
// in_frame.num_channels_ > encoder_stack_->NumChannels()
const bool down_mix =
in_frame.num_channels_ == 2 && encoder_stack_->NumChannels() == 1;
if (!first_10ms_data_) {
expected_in_ts_ = in_frame.timestamp_;
expected_codec_ts_ = in_frame.timestamp_;
first_10ms_data_ = true;
} else if (in_frame.timestamp_ != expected_in_ts_) {
RTC_LOG(LS_WARNING) << "Unexpected input timestamp: " << in_frame.timestamp_
<< ", expected: " << expected_in_ts_;
expected_codec_ts_ +=
(in_frame.timestamp_ - expected_in_ts_) *
static_cast<uint32_t>(
static_cast<double>(encoder_stack_->SampleRateHz()) /
static_cast<double>(in_frame.sample_rate_hz_));
expected_in_ts_ = in_frame.timestamp_;
}
if (!down_mix && !resample) {
// No pre-processing is required.
if (expected_in_ts_ == expected_codec_ts_) {
// If we've never resampled, we can use the input frame as-is
*ptr_out = &in_frame;
} else {
// Otherwise we'll need to alter the timestamp. Since in_frame is const,
// we'll have to make a copy of it.
preprocess_frame_.CopyFrom(in_frame);
preprocess_frame_.timestamp_ = expected_codec_ts_;
*ptr_out = &preprocess_frame_;
}
expected_in_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_);
expected_codec_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_);
return 0;
}
*ptr_out = &preprocess_frame_;
preprocess_frame_.num_channels_ = in_frame.num_channels_;
preprocess_frame_.samples_per_channel_ = in_frame.samples_per_channel_;
std::array<int16_t, AudioFrame::kMaxDataSizeSamples> audio;
const int16_t* src_ptr_audio;
if (down_mix) {
// If a resampling is required, the output of a down-mix is written into a
// local buffer, otherwise, it will be written to the output frame.
int16_t* dest_ptr_audio =
resample ? audio.data() : preprocess_frame_.mutable_data();
RTC_DCHECK_GE(audio.size(), preprocess_frame_.samples_per_channel_);
RTC_DCHECK_GE(audio.size(), in_frame.samples_per_channel_);
DownMixFrame(in_frame,
rtc::ArrayView<int16_t>(
dest_ptr_audio, preprocess_frame_.samples_per_channel_));
preprocess_frame_.num_channels_ = 1;
// Set the input of the resampler to the down-mixed signal.
src_ptr_audio = audio.data();
} else {
// Set the input of the resampler to the original data.
src_ptr_audio = in_frame.data();
}
preprocess_frame_.timestamp_ = expected_codec_ts_;
preprocess_frame_.sample_rate_hz_ = in_frame.sample_rate_hz_;
// If it is required, we have to do a resampling.
if (resample) {
// The result of the resampler is written to output frame.
int16_t* dest_ptr_audio = preprocess_frame_.mutable_data();
int samples_per_channel = resampler_.Resample10Msec(
src_ptr_audio, in_frame.sample_rate_hz_, encoder_stack_->SampleRateHz(),
preprocess_frame_.num_channels_, AudioFrame::kMaxDataSizeSamples,
dest_ptr_audio);
if (samples_per_channel < 0) {
RTC_LOG(LS_ERROR) << "Cannot add 10 ms audio, resampling failed";
return -1;
}
preprocess_frame_.samples_per_channel_ =
static_cast<size_t>(samples_per_channel);
preprocess_frame_.sample_rate_hz_ = encoder_stack_->SampleRateHz();
}
expected_codec_ts_ +=
static_cast<uint32_t>(preprocess_frame_.samples_per_channel_);
expected_in_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_);
return 0;
}
/////////////////////////////////////////
// (FEC) Forward Error Correction (codec internal)
//
int AudioCodingModuleImpl::SetPacketLossRate(int loss_rate) {
MutexLock lock(&acm_mutex_);
if (HaveValidEncoder("SetPacketLossRate")) {
encoder_stack_->OnReceivedUplinkPacketLossFraction(loss_rate / 100.0);
}
return 0;
}
/////////////////////////////////////////
// Statistics
//
bool AudioCodingModuleImpl::HaveValidEncoder(
absl::string_view caller_name) const {
if (!encoder_stack_) {
RTC_LOG(LS_ERROR) << caller_name << " failed: No send codec is registered.";
return false;
}
return true;
}
ANAStats AudioCodingModuleImpl::GetANAStats() const {
MutexLock lock(&acm_mutex_);
if (encoder_stack_)
return encoder_stack_->GetANAStats();
// If no encoder is set, return default stats.
return ANAStats();
}
int AudioCodingModuleImpl::GetTargetBitrate() const {
MutexLock lock(&acm_mutex_);
if (!encoder_stack_) {
return -1;
}
return encoder_stack_->GetTargetBitrate();
}
} // namespace
std::unique_ptr<AudioCodingModule> AudioCodingModule::Create() {
return std::make_unique<AudioCodingModuleImpl>();
}
} // namespace webrtc