mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-16 07:10:38 +01:00

In https://webrtc-review.googlesource.com/c/src/+/1560 we moved WebRTC from src/webrtc to src/ (in order to preserve an healthy git history). This CL takes care of fixing header guards, #include paths, etc... NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true TBR=tommi@webrtc.org Bug: chromium:611808 Change-Id: Iea91618212bee0af16aa3f05071eab8f93706578 Reviewed-on: https://webrtc-review.googlesource.com/1561 Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org> Reviewed-by: Henrik Kjellander <kjellander@webrtc.org> Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org> Cr-Commit-Position: refs/heads/master@{#19846}
318 lines
12 KiB
C++
318 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/aec_state.h"
|
|
|
|
#include <math.h>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/atomicops.h"
|
|
#include "rtc_base/checks.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
// Computes delay of the adaptive filter.
|
|
rtc::Optional<size_t> EstimateFilterDelay(
|
|
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
|
|
adaptive_filter_frequency_response) {
|
|
const auto& H2 = adaptive_filter_frequency_response;
|
|
|
|
size_t reliable_delays_sum = 0;
|
|
size_t num_reliable_delays = 0;
|
|
|
|
constexpr size_t kUpperBin = kFftLengthBy2 - 5;
|
|
constexpr float kMinPeakMargin = 10.f;
|
|
const size_t kTailPartition = H2.size() - 1;
|
|
for (size_t k = 1; k < kUpperBin; ++k) {
|
|
// Find the maximum of H2[j].
|
|
int peak = 0;
|
|
for (size_t j = 0; j < H2.size(); ++j) {
|
|
if (H2[j][k] > H2[peak][k]) {
|
|
peak = j;
|
|
}
|
|
}
|
|
|
|
// Count the peak as a delay only if the peak is sufficiently larger than
|
|
// the tail.
|
|
if (kMinPeakMargin * H2[kTailPartition][k] < H2[peak][k]) {
|
|
reliable_delays_sum += peak;
|
|
++num_reliable_delays;
|
|
}
|
|
}
|
|
|
|
// Return no delay if not sufficient delays have been found.
|
|
if (num_reliable_delays < 21) {
|
|
return rtc::Optional<size_t>();
|
|
}
|
|
|
|
const size_t delay = reliable_delays_sum / num_reliable_delays;
|
|
// Sanity check that the peak is not caused by a false strong DC-component in
|
|
// the filter.
|
|
for (size_t k = 1; k < kUpperBin; ++k) {
|
|
if (H2[delay][k] > H2[delay][0]) {
|
|
RTC_DCHECK_GT(H2.size(), delay);
|
|
return rtc::Optional<size_t>(delay);
|
|
}
|
|
}
|
|
return rtc::Optional<size_t>();
|
|
}
|
|
|
|
constexpr int kEchoPathChangeCounterInitial = kNumBlocksPerSecond / 5;
|
|
constexpr int kEchoPathChangeCounterMax = 2 * kNumBlocksPerSecond;
|
|
|
|
} // namespace
|
|
|
|
int AecState::instance_count_ = 0;
|
|
|
|
AecState::AecState(const AudioProcessing::Config::EchoCanceller3& config)
|
|
: data_dumper_(
|
|
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
|
|
erle_estimator_(config.param.erle.min,
|
|
config.param.erle.max_l,
|
|
config.param.erle.max_h),
|
|
echo_path_change_counter_(kEchoPathChangeCounterInitial),
|
|
config_(config),
|
|
reverb_decay_(config_.param.ep_strength.default_len) {}
|
|
|
|
AecState::~AecState() = default;
|
|
|
|
void AecState::HandleEchoPathChange(
|
|
const EchoPathVariability& echo_path_variability) {
|
|
if (echo_path_variability.AudioPathChanged()) {
|
|
blocks_since_last_saturation_ = 0;
|
|
usable_linear_estimate_ = false;
|
|
echo_leakage_detected_ = false;
|
|
capture_signal_saturation_ = false;
|
|
echo_saturation_ = false;
|
|
previous_max_sample_ = 0.f;
|
|
|
|
if (echo_path_variability.delay_change) {
|
|
force_zero_gain_counter_ = 0;
|
|
blocks_with_filter_adaptation_ = 0;
|
|
render_received_ = false;
|
|
force_zero_gain_ = true;
|
|
echo_path_change_counter_ = kEchoPathChangeCounterMax;
|
|
}
|
|
if (echo_path_variability.gain_change) {
|
|
echo_path_change_counter_ = kEchoPathChangeCounterInitial;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AecState::Update(const std::vector<std::array<float, kFftLengthBy2Plus1>>&
|
|
adaptive_filter_frequency_response,
|
|
const std::array<float, kAdaptiveFilterTimeDomainLength>&
|
|
adaptive_filter_impulse_response,
|
|
const rtc::Optional<size_t>& external_delay_samples,
|
|
const RenderBuffer& render_buffer,
|
|
const std::array<float, kFftLengthBy2Plus1>& E2_main,
|
|
const std::array<float, kFftLengthBy2Plus1>& Y2,
|
|
rtc::ArrayView<const float> x,
|
|
const std::array<float, kBlockSize>& s,
|
|
bool echo_leakage_detected) {
|
|
// Update the echo audibility evaluator.
|
|
echo_audibility_.Update(x, s);
|
|
|
|
// Store input parameters.
|
|
echo_leakage_detected_ = echo_leakage_detected;
|
|
|
|
// Update counters.
|
|
const float x_energy = std::inner_product(x.begin(), x.end(), x.begin(), 0.f);
|
|
|
|
const bool active_render_block =
|
|
x_energy > (config_.param.render_levels.active_render_limit *
|
|
config_.param.render_levels.active_render_limit) *
|
|
kFftLengthBy2;
|
|
if (active_render_block) {
|
|
render_received_ = true;
|
|
}
|
|
blocks_with_filter_adaptation_ +=
|
|
(active_render_block && (!SaturatedCapture()) ? 1 : 0);
|
|
--echo_path_change_counter_;
|
|
|
|
// Force zero echo suppression gain after an echo path change to allow at
|
|
// least some render data to be collected in order to avoid an initial echo
|
|
// burst.
|
|
constexpr size_t kZeroGainBlocksAfterChange = kNumBlocksPerSecond / 5;
|
|
force_zero_gain_ = (++force_zero_gain_counter_) < kZeroGainBlocksAfterChange;
|
|
|
|
// Estimate delays.
|
|
filter_delay_ = EstimateFilterDelay(adaptive_filter_frequency_response);
|
|
external_delay_ =
|
|
external_delay_samples
|
|
? rtc::Optional<size_t>(*external_delay_samples / kBlockSize)
|
|
: rtc::Optional<size_t>();
|
|
|
|
// Update the ERL and ERLE measures.
|
|
if (filter_delay_ && echo_path_change_counter_ <= 0) {
|
|
const auto& X2 = render_buffer.Spectrum(*filter_delay_);
|
|
erle_estimator_.Update(X2, Y2, E2_main);
|
|
erl_estimator_.Update(X2, Y2);
|
|
}
|
|
|
|
// Detect and flag echo saturation.
|
|
// TODO(peah): Add the delay in this computation to ensure that the render and
|
|
// capture signals are properly aligned.
|
|
RTC_DCHECK_LT(0, x.size());
|
|
const float max_sample = fabs(*std::max_element(
|
|
x.begin(), x.end(), [](float a, float b) { return a * a < b * b; }));
|
|
const bool saturated_echo =
|
|
previous_max_sample_ * 100 > 1600 && SaturatedCapture();
|
|
previous_max_sample_ = max_sample;
|
|
|
|
// Counts the blocks since saturation.
|
|
constexpr size_t kSaturationLeakageBlocks = 20;
|
|
blocks_since_last_saturation_ =
|
|
saturated_echo ? 0 : blocks_since_last_saturation_ + 1;
|
|
echo_saturation_ = blocks_since_last_saturation_ < kSaturationLeakageBlocks;
|
|
|
|
// Flag whether the linear filter estimate is usable.
|
|
constexpr size_t kEchoPathChangeConvergenceBlocks = 2 * kNumBlocksPerSecond;
|
|
usable_linear_estimate_ =
|
|
(!echo_saturation_) &&
|
|
(!render_received_ ||
|
|
blocks_with_filter_adaptation_ > kEchoPathChangeConvergenceBlocks) &&
|
|
filter_delay_ && echo_path_change_counter_ <= 0 && external_delay_;
|
|
|
|
// After an amount of active render samples for which an echo should have been
|
|
// detected in the capture signal if the ERL was not infinite, flag that a
|
|
// headset is used.
|
|
constexpr size_t kHeadSetDetectionBlocks = 5 * kNumBlocksPerSecond;
|
|
headset_detected_ = !external_delay_ && !filter_delay_ &&
|
|
(!render_received_ || blocks_with_filter_adaptation_ >=
|
|
kHeadSetDetectionBlocks);
|
|
|
|
// Update the room reverb estimate.
|
|
UpdateReverb(adaptive_filter_impulse_response);
|
|
}
|
|
|
|
void AecState::UpdateReverb(
|
|
const std::array<float, kAdaptiveFilterTimeDomainLength>&
|
|
impulse_response) {
|
|
if ((!(filter_delay_ && usable_linear_estimate_)) ||
|
|
(*filter_delay_ > kAdaptiveFilterLength - 4)) {
|
|
return;
|
|
}
|
|
|
|
// Form the data to match against by squaring the impulse response
|
|
// coefficients.
|
|
std::array<float, kAdaptiveFilterTimeDomainLength> matching_data;
|
|
std::transform(impulse_response.begin(), impulse_response.end(),
|
|
matching_data.begin(), [](float a) { return a * a; });
|
|
|
|
// Avoid matching against noise in the model by subtracting an estimate of the
|
|
// model noise power.
|
|
constexpr size_t kTailLength = 64;
|
|
constexpr size_t tail_index = kAdaptiveFilterTimeDomainLength - kTailLength;
|
|
const float tail_power = *std::max_element(matching_data.begin() + tail_index,
|
|
matching_data.end());
|
|
std::for_each(matching_data.begin(), matching_data.begin() + tail_index,
|
|
[tail_power](float& a) { a = std::max(0.f, a - tail_power); });
|
|
|
|
// Identify the peak index of the impulse response.
|
|
const size_t peak_index = *std::max_element(
|
|
matching_data.begin(), matching_data.begin() + tail_index);
|
|
|
|
if (peak_index + 128 < tail_index) {
|
|
size_t start_index = peak_index + 64;
|
|
// Compute the matching residual error for the current candidate to match.
|
|
float residual_sqr_sum = 0.f;
|
|
float d_k = reverb_decay_to_test_;
|
|
for (size_t k = start_index; k < tail_index; ++k) {
|
|
if (matching_data[start_index + 1] == 0.f) {
|
|
break;
|
|
}
|
|
|
|
float residual = matching_data[k] - matching_data[peak_index] * d_k;
|
|
residual_sqr_sum += residual * residual;
|
|
d_k *= reverb_decay_to_test_;
|
|
}
|
|
|
|
// If needed, update the best candidate for the reverb decay.
|
|
if (reverb_decay_candidate_residual_ < 0.f ||
|
|
residual_sqr_sum < reverb_decay_candidate_residual_) {
|
|
reverb_decay_candidate_residual_ = residual_sqr_sum;
|
|
reverb_decay_candidate_ = reverb_decay_to_test_;
|
|
}
|
|
}
|
|
|
|
// Compute the next reverb candidate to evaluate such that all candidates will
|
|
// be evaluated within one second.
|
|
reverb_decay_to_test_ += (0.9965f - 0.9f) / (5 * kNumBlocksPerSecond);
|
|
|
|
// If all reverb candidates have been evaluated, choose the best one as the
|
|
// reverb decay.
|
|
if (reverb_decay_to_test_ >= 0.9965f) {
|
|
if (reverb_decay_candidate_residual_ < 0.f) {
|
|
// Transform the decay to be in the unit of blocks.
|
|
reverb_decay_ = powf(reverb_decay_candidate_, kFftLengthBy2);
|
|
|
|
// Limit the estimated reverb_decay_ to the maximum one needed in practice
|
|
// to minimize the impact of incorrect estimates.
|
|
reverb_decay_ =
|
|
std::min(config_.param.ep_strength.default_len, reverb_decay_);
|
|
}
|
|
reverb_decay_to_test_ = 0.9f;
|
|
reverb_decay_candidate_residual_ = -1.f;
|
|
}
|
|
|
|
// For noisy impulse responses, assume a fixed tail length.
|
|
if (tail_power > 0.0005f) {
|
|
reverb_decay_ = config_.param.ep_strength.default_len;
|
|
}
|
|
data_dumper_->DumpRaw("aec3_reverb_decay", reverb_decay_);
|
|
data_dumper_->DumpRaw("aec3_tail_power", tail_power);
|
|
}
|
|
|
|
void AecState::EchoAudibility::Update(rtc::ArrayView<const float> x,
|
|
const std::array<float, kBlockSize>& s) {
|
|
auto result_x = std::minmax_element(x.begin(), x.end());
|
|
auto result_s = std::minmax_element(s.begin(), s.end());
|
|
const float x_abs =
|
|
std::max(std::abs(*result_x.first), std::abs(*result_x.second));
|
|
const float s_abs =
|
|
std::max(std::abs(*result_s.first), std::abs(*result_s.second));
|
|
|
|
if (x_abs < 5.f) {
|
|
++low_farend_counter_;
|
|
} else {
|
|
low_farend_counter_ = 0;
|
|
}
|
|
|
|
// The echo is deemed as not audible if the echo estimate is on the level of
|
|
// the quantization noise in the FFTs and the nearend level is sufficiently
|
|
// strong to mask that by ensuring that the playout and AGC gains do not boost
|
|
// any residual echo that is below the quantization noise level. Furthermore,
|
|
// cases where the render signal is very close to zero are also identified as
|
|
// not producing audible echo.
|
|
inaudible_echo_ = max_nearend_ > 500 && s_abs < 30.f;
|
|
inaudible_echo_ = inaudible_echo_ || low_farend_counter_ > 20;
|
|
}
|
|
|
|
void AecState::EchoAudibility::UpdateWithOutput(rtc::ArrayView<const float> e) {
|
|
const float e_max = *std::max_element(e.begin(), e.end());
|
|
const float e_min = *std::min_element(e.begin(), e.end());
|
|
const float e_abs = std::max(std::abs(e_max), std::abs(e_min));
|
|
|
|
if (max_nearend_ < e_abs) {
|
|
max_nearend_ = e_abs;
|
|
max_nearend_counter_ = 0;
|
|
} else {
|
|
if (++max_nearend_counter_ > 5 * kNumBlocksPerSecond) {
|
|
max_nearend_ *= 0.995f;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|