webrtc/modules/audio_coding/codecs/opus/audio_encoder_opus_unittest.cc
Karl Wiberg 7275e18439 Hide the internal AudioEncoderOpus class by giving it an "Impl" suffix
We've done this previously with the other audio encoders, but Opus had
to wait until all external users had been updated.

BUG=webrtc:7847

Change-Id: I70422d7b6c715f32a43bee88febcf6b6155e18b3
Reviewed-on: https://webrtc-review.googlesource.com/8000
Commit-Queue: Karl Wiberg <kwiberg@webrtc.org>
Reviewed-by: Oskar Sundbom <ossu@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#20424}
2017-10-25 10:19:06 +00:00

768 lines
30 KiB
C++

/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <array>
#include <memory>
#include <utility>
#include "api/audio_codecs/opus/audio_encoder_opus.h"
#include "common_audio/mocks/mock_smoothing_filter.h"
#include "common_types.h" // NOLINT(build/include)
#include "modules/audio_coding/audio_network_adaptor/mock/mock_audio_network_adaptor.h"
#include "modules/audio_coding/codecs/opus/audio_encoder_opus.h"
#include "modules/audio_coding/neteq/tools/audio_loop.h"
#include "rtc_base/checks.h"
#include "rtc_base/fakeclock.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/testsupport/fileutils.h"
namespace webrtc {
using ::testing::NiceMock;
using ::testing::Return;
namespace {
const CodecInst kDefaultOpusSettings = {105, "opus", 48000, 960, 1, 32000};
constexpr int64_t kInitialTimeUs = 12345678;
AudioEncoderOpusConfig CreateConfig(const CodecInst& codec_inst) {
AudioEncoderOpusConfig config;
config.frame_size_ms = rtc::CheckedDivExact(codec_inst.pacsize, 48);
config.num_channels = codec_inst.channels;
config.bitrate_bps = rtc::Optional<int>(codec_inst.rate);
config.application = config.num_channels == 1
? AudioEncoderOpusConfig::ApplicationMode::kVoip
: AudioEncoderOpusConfig::ApplicationMode::kAudio;
config.supported_frame_lengths_ms.push_back(config.frame_size_ms);
return config;
}
AudioEncoderOpusConfig CreateConfigWithParameters(
const SdpAudioFormat::Parameters& params) {
const SdpAudioFormat format("opus", 48000, 2, params);
return *AudioEncoderOpus::SdpToConfig(format);
}
struct AudioEncoderOpusStates {
std::shared_ptr<MockAudioNetworkAdaptor*> mock_audio_network_adaptor;
MockSmoothingFilter* mock_bitrate_smoother;
std::unique_ptr<AudioEncoderOpusImpl> encoder;
std::unique_ptr<rtc::ScopedFakeClock> fake_clock;
AudioEncoderOpusConfig config;
};
AudioEncoderOpusStates CreateCodec(size_t num_channels) {
AudioEncoderOpusStates states;
states.mock_audio_network_adaptor =
std::make_shared<MockAudioNetworkAdaptor*>(nullptr);
states.fake_clock.reset(new rtc::ScopedFakeClock());
states.fake_clock->SetTimeMicros(kInitialTimeUs);
std::weak_ptr<MockAudioNetworkAdaptor*> mock_ptr(
states.mock_audio_network_adaptor);
AudioEncoderOpusImpl::AudioNetworkAdaptorCreator creator =
[mock_ptr](const std::string&, RtcEventLog* event_log) {
std::unique_ptr<MockAudioNetworkAdaptor> adaptor(
new NiceMock<MockAudioNetworkAdaptor>());
EXPECT_CALL(*adaptor, Die());
if (auto sp = mock_ptr.lock()) {
*sp = adaptor.get();
} else {
RTC_NOTREACHED();
}
return adaptor;
};
CodecInst codec_inst = kDefaultOpusSettings;
codec_inst.channels = num_channels;
states.config = CreateConfig(codec_inst);
std::unique_ptr<MockSmoothingFilter> bitrate_smoother(
new MockSmoothingFilter());
states.mock_bitrate_smoother = bitrate_smoother.get();
states.encoder.reset(new AudioEncoderOpusImpl(
states.config, codec_inst.pltype, std::move(creator),
std::move(bitrate_smoother)));
return states;
}
AudioEncoderRuntimeConfig CreateEncoderRuntimeConfig() {
constexpr int kBitrate = 40000;
constexpr int kFrameLength = 60;
constexpr bool kEnableFec = true;
constexpr bool kEnableDtx = false;
constexpr size_t kNumChannels = 1;
constexpr float kPacketLossFraction = 0.1f;
AudioEncoderRuntimeConfig config;
config.bitrate_bps = rtc::Optional<int>(kBitrate);
config.frame_length_ms = rtc::Optional<int>(kFrameLength);
config.enable_fec = rtc::Optional<bool>(kEnableFec);
config.enable_dtx = rtc::Optional<bool>(kEnableDtx);
config.num_channels = rtc::Optional<size_t>(kNumChannels);
config.uplink_packet_loss_fraction =
rtc::Optional<float>(kPacketLossFraction);
return config;
}
void CheckEncoderRuntimeConfig(const AudioEncoderOpusImpl* encoder,
const AudioEncoderRuntimeConfig& config) {
EXPECT_EQ(*config.bitrate_bps, encoder->GetTargetBitrate());
EXPECT_EQ(*config.frame_length_ms, encoder->next_frame_length_ms());
EXPECT_EQ(*config.enable_fec, encoder->fec_enabled());
EXPECT_EQ(*config.enable_dtx, encoder->GetDtx());
EXPECT_EQ(*config.num_channels, encoder->num_channels_to_encode());
}
// Create 10ms audio data blocks for a total packet size of "packet_size_ms".
std::unique_ptr<test::AudioLoop> Create10msAudioBlocks(
const std::unique_ptr<AudioEncoderOpusImpl>& encoder,
int packet_size_ms) {
const std::string file_name =
test::ResourcePath("audio_coding/testfile32kHz", "pcm");
std::unique_ptr<test::AudioLoop> speech_data(new test::AudioLoop());
int audio_samples_per_ms =
rtc::CheckedDivExact(encoder->SampleRateHz(), 1000);
if (!speech_data->Init(
file_name,
packet_size_ms * audio_samples_per_ms *
encoder->num_channels_to_encode(),
10 * audio_samples_per_ms * encoder->num_channels_to_encode()))
return nullptr;
return speech_data;
}
} // namespace
TEST(AudioEncoderOpusTest, DefaultApplicationModeMono) {
auto states = CreateCodec(1);
EXPECT_EQ(AudioEncoderOpusConfig::ApplicationMode::kVoip,
states.encoder->application());
}
TEST(AudioEncoderOpusTest, DefaultApplicationModeStereo) {
auto states = CreateCodec(2);
EXPECT_EQ(AudioEncoderOpusConfig::ApplicationMode::kAudio,
states.encoder->application());
}
TEST(AudioEncoderOpusTest, ChangeApplicationMode) {
auto states = CreateCodec(2);
EXPECT_TRUE(
states.encoder->SetApplication(AudioEncoder::Application::kSpeech));
EXPECT_EQ(AudioEncoderOpusConfig::ApplicationMode::kVoip,
states.encoder->application());
}
TEST(AudioEncoderOpusTest, ResetWontChangeApplicationMode) {
auto states = CreateCodec(2);
// Trigger a reset.
states.encoder->Reset();
// Verify that the mode is still kAudio.
EXPECT_EQ(AudioEncoderOpusConfig::ApplicationMode::kAudio,
states.encoder->application());
// Now change to kVoip.
EXPECT_TRUE(
states.encoder->SetApplication(AudioEncoder::Application::kSpeech));
EXPECT_EQ(AudioEncoderOpusConfig::ApplicationMode::kVoip,
states.encoder->application());
// Trigger a reset again.
states.encoder->Reset();
// Verify that the mode is still kVoip.
EXPECT_EQ(AudioEncoderOpusConfig::ApplicationMode::kVoip,
states.encoder->application());
}
TEST(AudioEncoderOpusTest, ToggleDtx) {
auto states = CreateCodec(2);
// Enable DTX
EXPECT_TRUE(states.encoder->SetDtx(true));
EXPECT_TRUE(states.encoder->GetDtx());
// Turn off DTX.
EXPECT_TRUE(states.encoder->SetDtx(false));
EXPECT_FALSE(states.encoder->GetDtx());
}
TEST(AudioEncoderOpusTest,
OnReceivedUplinkBandwidthWithoutAudioNetworkAdaptor) {
auto states = CreateCodec(1);
// Constants are replicated from audio_states.encoderopus.cc.
const int kMinBitrateBps = 6000;
const int kMaxBitrateBps = 510000;
// Set a too low bitrate.
states.encoder->OnReceivedUplinkBandwidth(kMinBitrateBps - 1,
rtc::Optional<int64_t>());
EXPECT_EQ(kMinBitrateBps, states.encoder->GetTargetBitrate());
// Set a too high bitrate.
states.encoder->OnReceivedUplinkBandwidth(kMaxBitrateBps + 1,
rtc::Optional<int64_t>());
EXPECT_EQ(kMaxBitrateBps, states.encoder->GetTargetBitrate());
// Set the minimum rate.
states.encoder->OnReceivedUplinkBandwidth(kMinBitrateBps,
rtc::Optional<int64_t>());
EXPECT_EQ(kMinBitrateBps, states.encoder->GetTargetBitrate());
// Set the maximum rate.
states.encoder->OnReceivedUplinkBandwidth(kMaxBitrateBps,
rtc::Optional<int64_t>());
EXPECT_EQ(kMaxBitrateBps, states.encoder->GetTargetBitrate());
// Set rates from kMaxBitrateBps up to 32000 bps.
for (int rate = kMinBitrateBps; rate <= 32000; rate += 1000) {
states.encoder->OnReceivedUplinkBandwidth(rate, rtc::Optional<int64_t>());
EXPECT_EQ(rate, states.encoder->GetTargetBitrate());
}
}
namespace {
// Returns a vector with the n evenly-spaced numbers a, a + (b - a)/(n - 1),
// ..., b.
std::vector<float> IntervalSteps(float a, float b, size_t n) {
RTC_DCHECK_GT(n, 1u);
const float step = (b - a) / (n - 1);
std::vector<float> points;
points.push_back(a);
for (size_t i = 1; i < n - 1; ++i)
points.push_back(a + i * step);
points.push_back(b);
return points;
}
// Sets the packet loss rate to each number in the vector in turn, and verifies
// that the loss rate as reported by the encoder is |expected_return| for all
// of them.
void TestSetPacketLossRate(AudioEncoderOpusStates* states,
const std::vector<float>& losses,
float expected_return) {
// |kSampleIntervalMs| is chosen to ease the calculation since
// 0.9999 ^ 184198 = 1e-8. Which minimizes the effect of
// PacketLossFractionSmoother used in AudioEncoderOpus.
constexpr int64_t kSampleIntervalMs = 184198;
for (float loss : losses) {
states->encoder->OnReceivedUplinkPacketLossFraction(loss);
states->fake_clock->AdvanceTime(
rtc::TimeDelta::FromMilliseconds(kSampleIntervalMs));
EXPECT_FLOAT_EQ(expected_return, states->encoder->packet_loss_rate());
}
}
} // namespace
TEST(AudioEncoderOpusTest, PacketLossRateOptimized) {
auto states = CreateCodec(1);
auto I = [](float a, float b) { return IntervalSteps(a, b, 10); };
constexpr float eps = 1e-8f;
// Note that the order of the following calls is critical.
// clang-format off
TestSetPacketLossRate(&states, I(0.00f , 0.01f - eps), 0.00f);
TestSetPacketLossRate(&states, I(0.01f + eps, 0.06f - eps), 0.01f);
TestSetPacketLossRate(&states, I(0.06f + eps, 0.11f - eps), 0.05f);
TestSetPacketLossRate(&states, I(0.11f + eps, 0.22f - eps), 0.10f);
TestSetPacketLossRate(&states, I(0.22f + eps, 1.00f ), 0.20f);
TestSetPacketLossRate(&states, I(1.00f , 0.18f + eps), 0.20f);
TestSetPacketLossRate(&states, I(0.18f - eps, 0.09f + eps), 0.10f);
TestSetPacketLossRate(&states, I(0.09f - eps, 0.04f + eps), 0.05f);
TestSetPacketLossRate(&states, I(0.04f - eps, 0.01f + eps), 0.01f);
TestSetPacketLossRate(&states, I(0.01f - eps, 0.00f ), 0.00f);
// clang-format on
}
TEST(AudioEncoderOpusTest, SetReceiverFrameLengthRange) {
auto states = CreateCodec(2);
// Before calling to |SetReceiverFrameLengthRange|,
// |supported_frame_lengths_ms| should contain only the frame length being
// used.
using ::testing::ElementsAre;
EXPECT_THAT(states.encoder->supported_frame_lengths_ms(),
ElementsAre(states.encoder->next_frame_length_ms()));
states.encoder->SetReceiverFrameLengthRange(0, 12345);
states.encoder->SetReceiverFrameLengthRange(21, 60);
EXPECT_THAT(states.encoder->supported_frame_lengths_ms(), ElementsAre(60));
states.encoder->SetReceiverFrameLengthRange(20, 59);
EXPECT_THAT(states.encoder->supported_frame_lengths_ms(), ElementsAre(20));
}
TEST(AudioEncoderOpusTest,
InvokeAudioNetworkAdaptorOnReceivedUplinkPacketLossFraction) {
auto states = CreateCodec(2);
states.encoder->EnableAudioNetworkAdaptor("", nullptr);
auto config = CreateEncoderRuntimeConfig();
EXPECT_CALL(**states.mock_audio_network_adaptor, GetEncoderRuntimeConfig())
.WillOnce(Return(config));
// Since using mock audio network adaptor, any packet loss fraction is fine.
constexpr float kUplinkPacketLoss = 0.1f;
EXPECT_CALL(**states.mock_audio_network_adaptor,
SetUplinkPacketLossFraction(kUplinkPacketLoss));
states.encoder->OnReceivedUplinkPacketLossFraction(kUplinkPacketLoss);
CheckEncoderRuntimeConfig(states.encoder.get(), config);
}
TEST(AudioEncoderOpusTest, InvokeAudioNetworkAdaptorOnReceivedUplinkBandwidth) {
auto states = CreateCodec(2);
states.encoder->EnableAudioNetworkAdaptor("", nullptr);
auto config = CreateEncoderRuntimeConfig();
EXPECT_CALL(**states.mock_audio_network_adaptor, GetEncoderRuntimeConfig())
.WillOnce(Return(config));
// Since using mock audio network adaptor, any target audio bitrate is fine.
constexpr int kTargetAudioBitrate = 30000;
constexpr int64_t kProbingIntervalMs = 3000;
EXPECT_CALL(**states.mock_audio_network_adaptor,
SetTargetAudioBitrate(kTargetAudioBitrate));
EXPECT_CALL(*states.mock_bitrate_smoother,
SetTimeConstantMs(kProbingIntervalMs * 4));
EXPECT_CALL(*states.mock_bitrate_smoother, AddSample(kTargetAudioBitrate));
states.encoder->OnReceivedUplinkBandwidth(
kTargetAudioBitrate, rtc::Optional<int64_t>(kProbingIntervalMs));
CheckEncoderRuntimeConfig(states.encoder.get(), config);
}
TEST(AudioEncoderOpusTest, InvokeAudioNetworkAdaptorOnReceivedRtt) {
auto states = CreateCodec(2);
states.encoder->EnableAudioNetworkAdaptor("", nullptr);
auto config = CreateEncoderRuntimeConfig();
EXPECT_CALL(**states.mock_audio_network_adaptor, GetEncoderRuntimeConfig())
.WillOnce(Return(config));
// Since using mock audio network adaptor, any rtt is fine.
constexpr int kRtt = 30;
EXPECT_CALL(**states.mock_audio_network_adaptor, SetRtt(kRtt));
states.encoder->OnReceivedRtt(kRtt);
CheckEncoderRuntimeConfig(states.encoder.get(), config);
}
TEST(AudioEncoderOpusTest, InvokeAudioNetworkAdaptorOnReceivedOverhead) {
auto states = CreateCodec(2);
states.encoder->EnableAudioNetworkAdaptor("", nullptr);
auto config = CreateEncoderRuntimeConfig();
EXPECT_CALL(**states.mock_audio_network_adaptor, GetEncoderRuntimeConfig())
.WillOnce(Return(config));
// Since using mock audio network adaptor, any overhead is fine.
constexpr size_t kOverhead = 64;
EXPECT_CALL(**states.mock_audio_network_adaptor, SetOverhead(kOverhead));
states.encoder->OnReceivedOverhead(kOverhead);
CheckEncoderRuntimeConfig(states.encoder.get(), config);
}
TEST(AudioEncoderOpusTest,
PacketLossFractionSmoothedOnSetUplinkPacketLossFraction) {
auto states = CreateCodec(2);
// The values are carefully chosen so that if no smoothing is made, the test
// will fail.
constexpr float kPacketLossFraction_1 = 0.02f;
constexpr float kPacketLossFraction_2 = 0.198f;
// |kSecondSampleTimeMs| is chosen to ease the calculation since
// 0.9999 ^ 6931 = 0.5.
constexpr int64_t kSecondSampleTimeMs = 6931;
// First time, no filtering.
states.encoder->OnReceivedUplinkPacketLossFraction(kPacketLossFraction_1);
EXPECT_FLOAT_EQ(0.01f, states.encoder->packet_loss_rate());
states.fake_clock->AdvanceTime(
rtc::TimeDelta::FromMilliseconds(kSecondSampleTimeMs));
states.encoder->OnReceivedUplinkPacketLossFraction(kPacketLossFraction_2);
// Now the output of packet loss fraction smoother should be
// (0.02 + 0.198) / 2 = 0.109, which reach the threshold for the optimized
// packet loss rate to increase to 0.05. If no smoothing has been made, the
// optimized packet loss rate should have been increase to 0.1.
EXPECT_FLOAT_EQ(0.05f, states.encoder->packet_loss_rate());
}
TEST(AudioEncoderOpusTest, DoNotInvokeSetTargetBitrateIfOverheadUnknown) {
test::ScopedFieldTrials override_field_trials(
"WebRTC-SendSideBwe-WithOverhead/Enabled/");
auto states = CreateCodec(2);
states.encoder->OnReceivedUplinkBandwidth(kDefaultOpusSettings.rate * 2,
rtc::Optional<int64_t>());
// Since |OnReceivedOverhead| has not been called, the codec bitrate should
// not change.
EXPECT_EQ(kDefaultOpusSettings.rate, states.encoder->GetTargetBitrate());
}
TEST(AudioEncoderOpusTest, OverheadRemovedFromTargetAudioBitrate) {
test::ScopedFieldTrials override_field_trials(
"WebRTC-SendSideBwe-WithOverhead/Enabled/");
auto states = CreateCodec(2);
constexpr size_t kOverheadBytesPerPacket = 64;
states.encoder->OnReceivedOverhead(kOverheadBytesPerPacket);
constexpr int kTargetBitrateBps = 40000;
states.encoder->OnReceivedUplinkBandwidth(kTargetBitrateBps,
rtc::Optional<int64_t>());
int packet_rate = rtc::CheckedDivExact(48000, kDefaultOpusSettings.pacsize);
EXPECT_EQ(kTargetBitrateBps -
8 * static_cast<int>(kOverheadBytesPerPacket) * packet_rate,
states.encoder->GetTargetBitrate());
}
TEST(AudioEncoderOpusTest, BitrateBounded) {
test::ScopedFieldTrials override_field_trials(
"WebRTC-SendSideBwe-WithOverhead/Enabled/");
constexpr int kMinBitrateBps = 6000;
constexpr int kMaxBitrateBps = 510000;
auto states = CreateCodec(2);
constexpr size_t kOverheadBytesPerPacket = 64;
states.encoder->OnReceivedOverhead(kOverheadBytesPerPacket);
int packet_rate = rtc::CheckedDivExact(48000, kDefaultOpusSettings.pacsize);
// Set a target rate that is smaller than |kMinBitrateBps| when overhead is
// subtracted. The eventual codec rate should be bounded by |kMinBitrateBps|.
int target_bitrate =
kOverheadBytesPerPacket * 8 * packet_rate + kMinBitrateBps - 1;
states.encoder->OnReceivedUplinkBandwidth(target_bitrate,
rtc::Optional<int64_t>());
EXPECT_EQ(kMinBitrateBps, states.encoder->GetTargetBitrate());
// Set a target rate that is greater than |kMaxBitrateBps| when overhead is
// subtracted. The eventual codec rate should be bounded by |kMaxBitrateBps|.
target_bitrate =
kOverheadBytesPerPacket * 8 * packet_rate + kMaxBitrateBps + 1;
states.encoder->OnReceivedUplinkBandwidth(target_bitrate,
rtc::Optional<int64_t>());
EXPECT_EQ(kMaxBitrateBps, states.encoder->GetTargetBitrate());
}
// Verifies that the complexity adaptation in the config works as intended.
TEST(AudioEncoderOpusTest, ConfigComplexityAdaptation) {
AudioEncoderOpusConfig config;
config.low_rate_complexity = 8;
config.complexity = 6;
// Bitrate within hysteresis window. Expect empty output.
config.bitrate_bps = rtc::Optional<int>(12500);
EXPECT_EQ(rtc::Optional<int>(),
AudioEncoderOpusImpl::GetNewComplexity(config));
// Bitrate below hysteresis window. Expect higher complexity.
config.bitrate_bps = rtc::Optional<int>(10999);
EXPECT_EQ(rtc::Optional<int>(8),
AudioEncoderOpusImpl::GetNewComplexity(config));
// Bitrate within hysteresis window. Expect empty output.
config.bitrate_bps = rtc::Optional<int>(12500);
EXPECT_EQ(rtc::Optional<int>(),
AudioEncoderOpusImpl::GetNewComplexity(config));
// Bitrate above hysteresis window. Expect lower complexity.
config.bitrate_bps = rtc::Optional<int>(14001);
EXPECT_EQ(rtc::Optional<int>(6),
AudioEncoderOpusImpl::GetNewComplexity(config));
}
TEST(AudioEncoderOpusTest, EmptyConfigDoesNotAffectEncoderSettings) {
auto states = CreateCodec(2);
states.encoder->EnableAudioNetworkAdaptor("", nullptr);
auto config = CreateEncoderRuntimeConfig();
AudioEncoderRuntimeConfig empty_config;
EXPECT_CALL(**states.mock_audio_network_adaptor, GetEncoderRuntimeConfig())
.WillOnce(Return(config))
.WillOnce(Return(empty_config));
constexpr size_t kOverhead = 64;
EXPECT_CALL(**states.mock_audio_network_adaptor, SetOverhead(kOverhead))
.Times(2);
states.encoder->OnReceivedOverhead(kOverhead);
states.encoder->OnReceivedOverhead(kOverhead);
CheckEncoderRuntimeConfig(states.encoder.get(), config);
}
TEST(AudioEncoderOpusTest, UpdateUplinkBandwidthInAudioNetworkAdaptor) {
auto states = CreateCodec(2);
states.encoder->EnableAudioNetworkAdaptor("", nullptr);
std::array<int16_t, 480 * 2> audio;
audio.fill(0);
rtc::Buffer encoded;
EXPECT_CALL(*states.mock_bitrate_smoother, GetAverage())
.WillOnce(Return(rtc::Optional<float>(50000)));
EXPECT_CALL(**states.mock_audio_network_adaptor, SetUplinkBandwidth(50000));
states.encoder->Encode(
0, rtc::ArrayView<const int16_t>(audio.data(), audio.size()), &encoded);
// Repeat update uplink bandwidth tests.
for (int i = 0; i < 5; i++) {
// Don't update till it is time to update again.
states.fake_clock->AdvanceTime(rtc::TimeDelta::FromMilliseconds(
states.config.uplink_bandwidth_update_interval_ms - 1));
states.encoder->Encode(
0, rtc::ArrayView<const int16_t>(audio.data(), audio.size()), &encoded);
// Update when it is time to update.
EXPECT_CALL(*states.mock_bitrate_smoother, GetAverage())
.WillOnce(Return(rtc::Optional<float>(40000)));
EXPECT_CALL(**states.mock_audio_network_adaptor, SetUplinkBandwidth(40000));
states.fake_clock->AdvanceTime(rtc::TimeDelta::FromMilliseconds(1));
states.encoder->Encode(
0, rtc::ArrayView<const int16_t>(audio.data(), audio.size()), &encoded);
}
}
TEST(AudioEncoderOpusTest, EncodeAtMinBitrate) {
auto states = CreateCodec(1);
constexpr int kNumPacketsToEncode = 2;
auto audio_frames =
Create10msAudioBlocks(states.encoder, kNumPacketsToEncode * 20);
ASSERT_TRUE(audio_frames) << "Create10msAudioBlocks failed";
rtc::Buffer encoded;
uint32_t rtp_timestamp = 12345; // Just a number not important to this test.
states.encoder->OnReceivedUplinkBandwidth(0, rtc::Optional<int64_t>());
for (int packet_index = 0; packet_index < kNumPacketsToEncode;
packet_index++) {
// Make sure we are not encoding before we have enough data for
// a 20ms packet.
for (int index = 0; index < 1; index++) {
states.encoder->Encode(rtp_timestamp, audio_frames->GetNextBlock(),
&encoded);
EXPECT_EQ(0u, encoded.size());
}
// Should encode now.
states.encoder->Encode(rtp_timestamp, audio_frames->GetNextBlock(),
&encoded);
EXPECT_GT(encoded.size(), 0u);
encoded.Clear();
}
}
TEST(AudioEncoderOpusTest, TestConfigDefaults) {
const auto config_opt = AudioEncoderOpus::SdpToConfig({"opus", 48000, 2});
ASSERT_TRUE(config_opt);
EXPECT_EQ(48000, config_opt->max_playback_rate_hz);
EXPECT_EQ(1u, config_opt->num_channels);
EXPECT_FALSE(config_opt->fec_enabled);
EXPECT_FALSE(config_opt->dtx_enabled);
EXPECT_EQ(20, config_opt->frame_size_ms);
}
TEST(AudioEncoderOpusTest, TestConfigFromParams) {
const auto config1 = CreateConfigWithParameters({{"stereo", "0"}});
EXPECT_EQ(1U, config1.num_channels);
const auto config2 = CreateConfigWithParameters({{"stereo", "1"}});
EXPECT_EQ(2U, config2.num_channels);
const auto config3 = CreateConfigWithParameters({{"useinbandfec", "0"}});
EXPECT_FALSE(config3.fec_enabled);
const auto config4 = CreateConfigWithParameters({{"useinbandfec", "1"}});
EXPECT_TRUE(config4.fec_enabled);
const auto config5 = CreateConfigWithParameters({{"usedtx", "0"}});
EXPECT_FALSE(config5.dtx_enabled);
const auto config6 = CreateConfigWithParameters({{"usedtx", "1"}});
EXPECT_TRUE(config6.dtx_enabled);
const auto config7 = CreateConfigWithParameters({{"cbr", "0"}});
EXPECT_FALSE(config7.cbr_enabled);
const auto config8 = CreateConfigWithParameters({{"cbr", "1"}});
EXPECT_TRUE(config8.cbr_enabled);
const auto config9 =
CreateConfigWithParameters({{"maxplaybackrate", "12345"}});
EXPECT_EQ(12345, config9.max_playback_rate_hz);
const auto config10 =
CreateConfigWithParameters({{"maxaveragebitrate", "96000"}});
EXPECT_EQ(96000, config10.bitrate_bps);
const auto config11 = CreateConfigWithParameters({{"maxptime", "40"}});
for (int frame_length : config11.supported_frame_lengths_ms) {
EXPECT_LE(frame_length, 40);
}
const auto config12 = CreateConfigWithParameters({{"minptime", "40"}});
for (int frame_length : config12.supported_frame_lengths_ms) {
EXPECT_GE(frame_length, 40);
}
const auto config13 = CreateConfigWithParameters({{"ptime", "40"}});
EXPECT_EQ(40, config13.frame_size_ms);
constexpr int kMinSupportedFrameLength = 10;
constexpr int kMaxSupportedFrameLength =
WEBRTC_OPUS_SUPPORT_120MS_PTIME ? 120 : 60;
const auto config14 = CreateConfigWithParameters({{"ptime", "1"}});
EXPECT_EQ(kMinSupportedFrameLength, config14.frame_size_ms);
const auto config15 = CreateConfigWithParameters({{"ptime", "2000"}});
EXPECT_EQ(kMaxSupportedFrameLength, config15.frame_size_ms);
}
TEST(AudioEncoderOpusTest, TestConfigFromInvalidParams) {
const webrtc::SdpAudioFormat format("opus", 48000, 2);
const auto default_config = *AudioEncoderOpus::SdpToConfig(format);
#if WEBRTC_OPUS_SUPPORT_120MS_PTIME
const std::vector<int> default_supported_frame_lengths_ms({20, 60, 120});
#else
const std::vector<int> default_supported_frame_lengths_ms({20, 60});
#endif
AudioEncoderOpusConfig config;
config = CreateConfigWithParameters({{"stereo", "invalid"}});
EXPECT_EQ(default_config.num_channels, config.num_channels);
config = CreateConfigWithParameters({{"useinbandfec", "invalid"}});
EXPECT_EQ(default_config.fec_enabled, config.fec_enabled);
config = CreateConfigWithParameters({{"usedtx", "invalid"}});
EXPECT_EQ(default_config.dtx_enabled, config.dtx_enabled);
config = CreateConfigWithParameters({{"cbr", "invalid"}});
EXPECT_EQ(default_config.dtx_enabled, config.dtx_enabled);
config = CreateConfigWithParameters({{"maxplaybackrate", "0"}});
EXPECT_EQ(default_config.max_playback_rate_hz, config.max_playback_rate_hz);
config = CreateConfigWithParameters({{"maxplaybackrate", "-23"}});
EXPECT_EQ(default_config.max_playback_rate_hz, config.max_playback_rate_hz);
config = CreateConfigWithParameters({{"maxplaybackrate", "not a number!"}});
EXPECT_EQ(default_config.max_playback_rate_hz, config.max_playback_rate_hz);
config = CreateConfigWithParameters({{"maxaveragebitrate", "0"}});
EXPECT_EQ(6000, config.bitrate_bps);
config = CreateConfigWithParameters({{"maxaveragebitrate", "-1000"}});
EXPECT_EQ(6000, config.bitrate_bps);
config = CreateConfigWithParameters({{"maxaveragebitrate", "1024000"}});
EXPECT_EQ(510000, config.bitrate_bps);
config = CreateConfigWithParameters({{"maxaveragebitrate", "not a number!"}});
EXPECT_EQ(default_config.bitrate_bps, config.bitrate_bps);
config = CreateConfigWithParameters({{"maxptime", "invalid"}});
EXPECT_EQ(default_supported_frame_lengths_ms,
config.supported_frame_lengths_ms);
config = CreateConfigWithParameters({{"minptime", "invalid"}});
EXPECT_EQ(default_supported_frame_lengths_ms,
config.supported_frame_lengths_ms);
config = CreateConfigWithParameters({{"ptime", "invalid"}});
EXPECT_EQ(default_supported_frame_lengths_ms,
config.supported_frame_lengths_ms);
}
// Test that bitrate will be overridden by the "maxaveragebitrate" parameter.
// Also test that the "maxaveragebitrate" can't be set to values outside the
// range of 6000 and 510000
TEST(AudioEncoderOpusTest, SetSendCodecOpusMaxAverageBitrate) {
// Ignore if less than 6000.
const auto config1 = AudioEncoderOpus::SdpToConfig(
{"opus", 48000, 2, {{"maxaveragebitrate", "5999"}}});
EXPECT_EQ(6000, config1->bitrate_bps);
// Ignore if larger than 510000.
const auto config2 = AudioEncoderOpus::SdpToConfig(
{"opus", 48000, 2, {{"maxaveragebitrate", "510001"}}});
EXPECT_EQ(510000, config2->bitrate_bps);
const auto config3 = AudioEncoderOpus::SdpToConfig(
{"opus", 48000, 2, {{"maxaveragebitrate", "200000"}}});
EXPECT_EQ(200000, config3->bitrate_bps);
}
// Test maxplaybackrate <= 8000 triggers Opus narrow band mode.
TEST(AudioEncoderOpusTest, SetMaxPlaybackRateNb) {
auto config = CreateConfigWithParameters({{"maxplaybackrate", "8000"}});
EXPECT_EQ(8000, config.max_playback_rate_hz);
EXPECT_EQ(12000, config.bitrate_bps);
config = CreateConfigWithParameters({{"maxplaybackrate", "8000"},
{"stereo", "1"}});
EXPECT_EQ(8000, config.max_playback_rate_hz);
EXPECT_EQ(24000, config.bitrate_bps);
}
// Test 8000 < maxplaybackrate <= 12000 triggers Opus medium band mode.
TEST(AudioEncoderOpusTest, SetMaxPlaybackRateMb) {
auto config = CreateConfigWithParameters({{"maxplaybackrate", "8001"}});
EXPECT_EQ(8001, config.max_playback_rate_hz);
EXPECT_EQ(20000, config.bitrate_bps);
config = CreateConfigWithParameters({{"maxplaybackrate", "8001"},
{"stereo", "1"}});
EXPECT_EQ(8001, config.max_playback_rate_hz);
EXPECT_EQ(40000, config.bitrate_bps);
}
// Test 12000 < maxplaybackrate <= 16000 triggers Opus wide band mode.
TEST(AudioEncoderOpusTest, SetMaxPlaybackRateWb) {
auto config = CreateConfigWithParameters({{"maxplaybackrate", "12001"}});
EXPECT_EQ(12001, config.max_playback_rate_hz);
EXPECT_EQ(20000, config.bitrate_bps);
config = CreateConfigWithParameters({{"maxplaybackrate", "12001"},
{"stereo", "1"}});
EXPECT_EQ(12001, config.max_playback_rate_hz);
EXPECT_EQ(40000, config.bitrate_bps);
}
// Test 16000 < maxplaybackrate <= 24000 triggers Opus super wide band mode.
TEST(AudioEncoderOpusTest, SetMaxPlaybackRateSwb) {
auto config = CreateConfigWithParameters({{"maxplaybackrate", "16001"}});
EXPECT_EQ(16001, config.max_playback_rate_hz);
EXPECT_EQ(32000, config.bitrate_bps);
config = CreateConfigWithParameters({{"maxplaybackrate", "16001"},
{"stereo", "1"}});
EXPECT_EQ(16001, config.max_playback_rate_hz);
EXPECT_EQ(64000, config.bitrate_bps);
}
// Test 24000 < maxplaybackrate triggers Opus full band mode.
TEST(AudioEncoderOpusTest, SetMaxPlaybackRateFb) {
auto config = CreateConfigWithParameters({{"maxplaybackrate", "24001"}});
EXPECT_EQ(24001, config.max_playback_rate_hz);
EXPECT_EQ(32000, config.bitrate_bps);
config = CreateConfigWithParameters({{"maxplaybackrate", "24001"},
{"stereo", "1"}});
EXPECT_EQ(24001, config.max_playback_rate_hz);
EXPECT_EQ(64000, config.bitrate_bps);
}
} // namespace webrtc