webrtc/modules/audio_processing/agc2/fixed_gain_controller_unittest.cc
Alex Loiko 03ad9b892c Fine-grained limiter metrics.
The FixedGainController is used in two places.
One is the AudioMixer. There it's used to limit the audio level after
adding streams. The other is GainController2, where it's placed after
steps that could boost the audio level outside the allowed range.

We log metrics from the FGC. To avoid confusion, this CL makes the two
use cases log to different histograms.

Chromium histogram CL is
https://chromium-review.googlesource.com/c/chromium/src/+/1170833

Bug: webrtc:7494
Change-Id: I1abe60fd8e96556f144d2ee576254b15beca1174
Reviewed-on: https://webrtc-review.googlesource.com/93464
Commit-Queue: Alex Loiko <aleloi@webrtc.org>
Reviewed-by: Ivo Creusen <ivoc@webrtc.org>
Reviewed-by: Åsa Persson <asapersson@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24284}
2018-08-15 08:32:18 +00:00

213 lines
7.8 KiB
C++

/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/fixed_gain_controller.h"
#include "absl/memory/memory.h"
#include "api/array_view.h"
#include "modules/audio_processing/agc2/agc2_testing_common.h"
#include "modules/audio_processing/agc2/vector_float_frame.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/gunit.h"
#include "system_wrappers/include/metrics_default.h"
namespace webrtc {
namespace {
constexpr float kInputLevelLinear = 15000.f;
constexpr float kGainToApplyDb = 15.f;
float RunFixedGainControllerWithConstantInput(FixedGainController* fixed_gc,
const float input_level,
const size_t num_frames,
const int sample_rate) {
// Give time to the level etimator to converge.
for (size_t i = 0; i < num_frames; ++i) {
VectorFloatFrame vectors_with_float_frame(
1, rtc::CheckedDivExact(sample_rate, 100), input_level);
fixed_gc->Process(vectors_with_float_frame.float_frame_view());
}
// Process the last frame with constant input level.
VectorFloatFrame vectors_with_float_frame_last(
1, rtc::CheckedDivExact(sample_rate, 100), input_level);
fixed_gc->Process(vectors_with_float_frame_last.float_frame_view());
// Return the last sample from the last processed frame.
const auto channel =
vectors_with_float_frame_last.float_frame_view().channel(0);
return channel[channel.size() - 1];
}
ApmDataDumper test_data_dumper(0);
std::unique_ptr<FixedGainController> CreateFixedGainController(
float gain_to_apply,
size_t rate,
std::string histogram_name_prefix) {
std::unique_ptr<FixedGainController> fgc =
absl::make_unique<FixedGainController>(&test_data_dumper,
histogram_name_prefix);
fgc->SetGain(gain_to_apply);
fgc->SetSampleRate(rate);
return fgc;
}
std::unique_ptr<FixedGainController> CreateFixedGainController(
float gain_to_apply,
size_t rate) {
return CreateFixedGainController(gain_to_apply, rate, "");
}
} // namespace
TEST(AutomaticGainController2FixedDigital, CreateUse) {
const int kSampleRate = 44000;
std::unique_ptr<FixedGainController> fixed_gc =
CreateFixedGainController(kGainToApplyDb, kSampleRate);
VectorFloatFrame vectors_with_float_frame(
1, rtc::CheckedDivExact(kSampleRate, 100), kInputLevelLinear);
auto float_frame = vectors_with_float_frame.float_frame_view();
fixed_gc->Process(float_frame);
const auto channel = float_frame.channel(0);
EXPECT_LT(kInputLevelLinear, channel[0]);
}
TEST(AutomaticGainController2FixedDigital, CheckSaturationBehaviorWithLimiter) {
const float kInputLevel = 32767.f;
const size_t kNumFrames = 5;
const size_t kSampleRate = 42000;
const auto gains_no_saturation =
test::LinSpace(0.1, test::kLimiterMaxInputLevelDbFs - 0.01, 10);
for (const auto gain_db : gains_no_saturation) {
// Since |test::kLimiterMaxInputLevelDbFs| > |gain_db|, the
// limiter will not saturate the signal.
std::unique_ptr<FixedGainController> fixed_gc_no_saturation =
CreateFixedGainController(gain_db, kSampleRate);
// Saturation not expected.
SCOPED_TRACE(std::to_string(gain_db));
EXPECT_LT(
RunFixedGainControllerWithConstantInput(
fixed_gc_no_saturation.get(), kInputLevel, kNumFrames, kSampleRate),
32767.f);
}
const auto gains_saturation =
test::LinSpace(test::kLimiterMaxInputLevelDbFs + 0.01, 10, 10);
for (const auto gain_db : gains_saturation) {
// Since |test::kLimiterMaxInputLevelDbFs| < |gain|, the limiter
// will saturate the signal.
std::unique_ptr<FixedGainController> fixed_gc_saturation =
CreateFixedGainController(gain_db, kSampleRate);
// Saturation expected.
SCOPED_TRACE(std::to_string(gain_db));
EXPECT_FLOAT_EQ(
RunFixedGainControllerWithConstantInput(
fixed_gc_saturation.get(), kInputLevel, kNumFrames, kSampleRate),
32767.f);
}
}
TEST(AutomaticGainController2FixedDigital,
CheckSaturationBehaviorWithLimiterSingleSample) {
const float kInputLevel = 32767.f;
const size_t kNumFrames = 5;
const size_t kSampleRate = 8000;
const auto gains_no_saturation =
test::LinSpace(0.1, test::kLimiterMaxInputLevelDbFs - 0.01, 10);
for (const auto gain_db : gains_no_saturation) {
// Since |gain| > |test::kLimiterMaxInputLevelDbFs|, the limiter will
// not saturate the signal.
std::unique_ptr<FixedGainController> fixed_gc_no_saturation =
CreateFixedGainController(gain_db, kSampleRate);
// Saturation not expected.
SCOPED_TRACE(std::to_string(gain_db));
EXPECT_LT(
RunFixedGainControllerWithConstantInput(
fixed_gc_no_saturation.get(), kInputLevel, kNumFrames, kSampleRate),
32767.f);
}
const auto gains_saturation =
test::LinSpace(test::kLimiterMaxInputLevelDbFs + 0.01, 10, 10);
for (const auto gain_db : gains_saturation) {
// Singe |gain| < |test::kLimiterMaxInputLevelDbFs|, the limiter will
// saturate the signal.
std::unique_ptr<FixedGainController> fixed_gc_saturation =
CreateFixedGainController(gain_db, kSampleRate);
// Saturation expected.
SCOPED_TRACE(std::to_string(gain_db));
EXPECT_FLOAT_EQ(
RunFixedGainControllerWithConstantInput(
fixed_gc_saturation.get(), kInputLevel, kNumFrames, kSampleRate),
32767.f);
}
}
TEST(AutomaticGainController2FixedDigital, GainShouldChangeOnSetGain) {
constexpr float kInputLevel = 1000.f;
constexpr size_t kNumFrames = 5;
constexpr size_t kSampleRate = 8000;
constexpr float kGainDbNoChange = 0.f;
constexpr float kGainDbFactor10 = 20.f;
std::unique_ptr<FixedGainController> fixed_gc_no_saturation =
CreateFixedGainController(kGainDbNoChange, kSampleRate);
// Signal level is unchanged with 0 db gain.
EXPECT_FLOAT_EQ(
RunFixedGainControllerWithConstantInput(
fixed_gc_no_saturation.get(), kInputLevel, kNumFrames, kSampleRate),
kInputLevel);
fixed_gc_no_saturation->SetGain(kGainDbFactor10);
// +20db should increase signal by a factor of 10.
EXPECT_FLOAT_EQ(
RunFixedGainControllerWithConstantInput(
fixed_gc_no_saturation.get(), kInputLevel, kNumFrames, kSampleRate),
kInputLevel * 10);
}
TEST(AutomaticGainController2FixedDigital, RegionHistogramIsUpdated) {
constexpr size_t kSampleRate = 8000;
constexpr float kGainDb = 0.f;
constexpr float kInputLevel = 1000.f;
constexpr size_t kNumFrames = 5;
metrics::Reset();
std::unique_ptr<FixedGainController> fixed_gc_no_saturation =
CreateFixedGainController(kGainDb, kSampleRate, "Test");
static_cast<void>(RunFixedGainControllerWithConstantInput(
fixed_gc_no_saturation.get(), kInputLevel, kNumFrames, kSampleRate));
// Destroying FixedGainController should cause the last limiter region to be
// logged.
fixed_gc_no_saturation.reset();
EXPECT_EQ(1, metrics::NumSamples(
"WebRTC.Audio.Test.FixedDigitalGainCurveRegion.Identity"));
EXPECT_EQ(0, metrics::NumSamples(
"WebRTC.Audio.Test.FixedDigitalGainCurveRegion.Knee"));
EXPECT_EQ(0, metrics::NumSamples(
"WebRTC.Audio.Test.FixedDigitalGainCurveRegion.Limiter"));
EXPECT_EQ(0, metrics::NumSamples(
"WebRTC.Audio.Test.FixedDigitalGainCurveRegion.Saturation"));
}
} // namespace webrtc