webrtc/modules/video_coding/frame_buffer2.cc
Niels Möller 2377588c82 Add accessor methods for RTP timestamp of EncodedImage.
Intention is to make the member private, but downstream callers
must be updated to use the accessor methods first.

Bug: webrtc:9378
Change-Id: I3495bd8d545b7234fbea10abfd14f082caa420b6
Reviewed-on: https://webrtc-review.googlesource.com/82160
Reviewed-by: Magnus Jedvert <magjed@webrtc.org>
Reviewed-by: Erik Språng <sprang@webrtc.org>
Reviewed-by: Sebastian Jansson <srte@webrtc.org>
Reviewed-by: Philip Eliasson <philipel@webrtc.org>
Commit-Queue: Niels Moller <nisse@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24352}
2018-08-21 09:15:51 +00:00

623 lines
23 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/frame_buffer2.h"
#include <algorithm>
#include <cstring>
#include <queue>
#include <vector>
#include "modules/video_coding/include/video_coding_defines.h"
#include "modules/video_coding/jitter_estimator.h"
#include "modules/video_coding/timing.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace video_coding {
namespace {
// Max number of frames the buffer will hold.
constexpr int kMaxFramesBuffered = 600;
// Max number of decoded frame info that will be saved.
constexpr int kMaxFramesHistory = 50;
// The time it's allowed for a frame to be late to its rendering prediction and
// still be rendered.
constexpr int kMaxAllowedFrameDelayMs = 5;
constexpr int64_t kLogNonDecodedIntervalMs = 5000;
} // namespace
FrameBuffer::FrameBuffer(Clock* clock,
VCMJitterEstimator* jitter_estimator,
VCMTiming* timing,
VCMReceiveStatisticsCallback* stats_callback)
: clock_(clock),
new_continuous_frame_event_(false, false),
jitter_estimator_(jitter_estimator),
timing_(timing),
inter_frame_delay_(clock_->TimeInMilliseconds()),
last_decoded_frame_timestamp_(0),
last_decoded_frame_it_(frames_.end()),
last_continuous_frame_it_(frames_.end()),
num_frames_history_(0),
num_frames_buffered_(0),
stopped_(false),
protection_mode_(kProtectionNack),
stats_callback_(stats_callback),
last_log_non_decoded_ms_(-kLogNonDecodedIntervalMs) {}
FrameBuffer::~FrameBuffer() {}
FrameBuffer::ReturnReason FrameBuffer::NextFrame(
int64_t max_wait_time_ms,
std::unique_ptr<EncodedFrame>* frame_out,
bool keyframe_required) {
TRACE_EVENT0("webrtc", "FrameBuffer::NextFrame");
int64_t latest_return_time_ms =
clock_->TimeInMilliseconds() + max_wait_time_ms;
int64_t wait_ms = max_wait_time_ms;
int64_t now_ms = 0;
do {
now_ms = clock_->TimeInMilliseconds();
{
rtc::CritScope lock(&crit_);
new_continuous_frame_event_.Reset();
if (stopped_)
return kStopped;
wait_ms = max_wait_time_ms;
// Need to hold |crit_| in order to use |frames_|, therefore we
// set it here in the loop instead of outside the loop in order to not
// acquire the lock unnecesserily.
next_frame_it_ = frames_.end();
// |frame_it| points to the first frame after the
// |last_decoded_frame_it_|.
auto frame_it = frames_.end();
if (last_decoded_frame_it_ == frames_.end()) {
frame_it = frames_.begin();
} else {
frame_it = last_decoded_frame_it_;
++frame_it;
}
// |continuous_end_it| points to the first frame after the
// |last_continuous_frame_it_|.
auto continuous_end_it = last_continuous_frame_it_;
if (continuous_end_it != frames_.end())
++continuous_end_it;
for (; frame_it != continuous_end_it && frame_it != frames_.end();
++frame_it) {
if (!frame_it->second.continuous ||
frame_it->second.num_missing_decodable > 0) {
continue;
}
EncodedFrame* frame = frame_it->second.frame.get();
if (keyframe_required && !frame->is_keyframe())
continue;
next_frame_it_ = frame_it;
if (frame->RenderTime() == -1)
frame->SetRenderTime(
timing_->RenderTimeMs(frame->Timestamp(), now_ms));
wait_ms = timing_->MaxWaitingTime(frame->RenderTime(), now_ms);
// This will cause the frame buffer to prefer high framerate rather
// than high resolution in the case of the decoder not decoding fast
// enough and the stream has multiple spatial and temporal layers.
// For multiple temporal layers it may cause non-base layer frames to be
// skipped if they are late.
if (wait_ms < -kMaxAllowedFrameDelayMs)
continue;
break;
}
} // rtc::Critscope lock(&crit_);
wait_ms = std::min<int64_t>(wait_ms, latest_return_time_ms - now_ms);
wait_ms = std::max<int64_t>(wait_ms, 0);
} while (new_continuous_frame_event_.Wait(wait_ms));
{
rtc::CritScope lock(&crit_);
now_ms = clock_->TimeInMilliseconds();
if (next_frame_it_ != frames_.end()) {
std::unique_ptr<EncodedFrame> frame =
std::move(next_frame_it_->second.frame);
if (!frame->delayed_by_retransmission()) {
int64_t frame_delay;
if (inter_frame_delay_.CalculateDelay(frame->Timestamp(), &frame_delay,
frame->ReceivedTime())) {
jitter_estimator_->UpdateEstimate(frame_delay, frame->size());
}
float rtt_mult = protection_mode_ == kProtectionNackFEC ? 0.0 : 1.0;
timing_->SetJitterDelay(jitter_estimator_->GetJitterEstimate(rtt_mult));
timing_->UpdateCurrentDelay(frame->RenderTime(), now_ms);
} else {
if (webrtc::field_trial::IsEnabled("WebRTC-AddRttToPlayoutDelay"))
jitter_estimator_->FrameNacked();
}
// Gracefully handle bad RTP timestamps and render time issues.
if (HasBadRenderTiming(*frame, now_ms)) {
jitter_estimator_->Reset();
timing_->Reset();
frame->SetRenderTime(timing_->RenderTimeMs(frame->Timestamp(), now_ms));
}
UpdateJitterDelay();
UpdateTimingFrameInfo();
PropagateDecodability(next_frame_it_->second);
// Sanity check for RTP timestamp monotonicity.
if (last_decoded_frame_it_ != frames_.end()) {
const VideoLayerFrameId& last_decoded_frame_key =
last_decoded_frame_it_->first;
const VideoLayerFrameId& frame_key = next_frame_it_->first;
const bool frame_is_higher_spatial_layer_of_last_decoded_frame =
last_decoded_frame_timestamp_ == frame->Timestamp() &&
last_decoded_frame_key.picture_id == frame_key.picture_id &&
last_decoded_frame_key.spatial_layer < frame_key.spatial_layer;
if (AheadOrAt(last_decoded_frame_timestamp_, frame->Timestamp()) &&
!frame_is_higher_spatial_layer_of_last_decoded_frame) {
// TODO(brandtr): Consider clearing the entire buffer when we hit
// these conditions.
RTC_LOG(LS_WARNING)
<< "Frame with (timestamp:picture_id:spatial_id) ("
<< frame->Timestamp() << ":" << frame->id.picture_id << ":"
<< static_cast<int>(frame->id.spatial_layer) << ")"
<< " sent to decoder after frame with"
<< " (timestamp:picture_id:spatial_id) ("
<< last_decoded_frame_timestamp_ << ":"
<< last_decoded_frame_key.picture_id << ":"
<< static_cast<int>(last_decoded_frame_key.spatial_layer) << ").";
}
}
AdvanceLastDecodedFrame(next_frame_it_);
last_decoded_frame_timestamp_ = frame->Timestamp();
*frame_out = std::move(frame);
return kFrameFound;
}
}
if (latest_return_time_ms - now_ms > 0) {
// If |next_frame_it_ == frames_.end()| and there is still time left, it
// means that the frame buffer was cleared as the thread in this function
// was waiting to acquire |crit_| in order to return. Wait for the
// remaining time and then return.
return NextFrame(latest_return_time_ms - now_ms, frame_out);
}
return kTimeout;
}
bool FrameBuffer::HasBadRenderTiming(const EncodedFrame& frame,
int64_t now_ms) {
// Assume that render timing errors are due to changes in the video stream.
int64_t render_time_ms = frame.RenderTimeMs();
// Zero render time means render immediately.
if (render_time_ms == 0) {
return false;
}
if (render_time_ms < 0) {
return true;
}
const int64_t kMaxVideoDelayMs = 10000;
if (std::abs(render_time_ms - now_ms) > kMaxVideoDelayMs) {
int frame_delay = static_cast<int>(std::abs(render_time_ms - now_ms));
RTC_LOG(LS_WARNING)
<< "A frame about to be decoded is out of the configured "
<< "delay bounds (" << frame_delay << " > " << kMaxVideoDelayMs
<< "). Resetting the video jitter buffer.";
return true;
}
if (static_cast<int>(timing_->TargetVideoDelay()) > kMaxVideoDelayMs) {
RTC_LOG(LS_WARNING) << "The video target delay has grown larger than "
<< kMaxVideoDelayMs << " ms.";
return true;
}
return false;
}
void FrameBuffer::SetProtectionMode(VCMVideoProtection mode) {
TRACE_EVENT0("webrtc", "FrameBuffer::SetProtectionMode");
rtc::CritScope lock(&crit_);
protection_mode_ = mode;
}
void FrameBuffer::Start() {
TRACE_EVENT0("webrtc", "FrameBuffer::Start");
rtc::CritScope lock(&crit_);
stopped_ = false;
}
void FrameBuffer::Stop() {
TRACE_EVENT0("webrtc", "FrameBuffer::Stop");
rtc::CritScope lock(&crit_);
stopped_ = true;
new_continuous_frame_event_.Set();
}
void FrameBuffer::UpdateRtt(int64_t rtt_ms) {
rtc::CritScope lock(&crit_);
jitter_estimator_->UpdateRtt(rtt_ms);
}
bool FrameBuffer::ValidReferences(const EncodedFrame& frame) const {
if (frame.id.picture_id < 0)
return false;
for (size_t i = 0; i < frame.num_references; ++i) {
if (frame.references[i] < 0 || frame.references[i] >= frame.id.picture_id)
return false;
for (size_t j = i + 1; j < frame.num_references; ++j) {
if (frame.references[i] == frame.references[j])
return false;
}
}
if (frame.inter_layer_predicted && frame.id.spatial_layer == 0)
return false;
return true;
}
void FrameBuffer::UpdatePlayoutDelays(const EncodedFrame& frame) {
TRACE_EVENT0("webrtc", "FrameBuffer::UpdatePlayoutDelays");
PlayoutDelay playout_delay = frame.EncodedImage().playout_delay_;
if (playout_delay.min_ms >= 0)
timing_->set_min_playout_delay(playout_delay.min_ms);
if (playout_delay.max_ms >= 0)
timing_->set_max_playout_delay(playout_delay.max_ms);
if (!frame.delayed_by_retransmission())
timing_->IncomingTimestamp(frame.Timestamp(), frame.ReceivedTime());
}
int64_t FrameBuffer::InsertFrame(std::unique_ptr<EncodedFrame> frame) {
TRACE_EVENT0("webrtc", "FrameBuffer::InsertFrame");
RTC_DCHECK(frame);
if (stats_callback_)
stats_callback_->OnCompleteFrame(frame->is_keyframe(), frame->size(),
frame->contentType());
const VideoLayerFrameId& id = frame->id;
rtc::CritScope lock(&crit_);
int64_t last_continuous_picture_id =
last_continuous_frame_it_ == frames_.end()
? -1
: last_continuous_frame_it_->first.picture_id;
if (!ValidReferences(*frame)) {
RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
<< id.picture_id << ":"
<< static_cast<int>(id.spatial_layer)
<< ") has invalid frame references, dropping frame.";
return last_continuous_picture_id;
}
if (num_frames_buffered_ >= kMaxFramesBuffered) {
if (frame->is_keyframe()) {
RTC_LOG(LS_WARNING) << "Inserting keyframe (picture_id:spatial_id) ("
<< id.picture_id << ":"
<< static_cast<int>(id.spatial_layer)
<< ") but buffer is full, clearing"
<< " buffer and inserting the frame.";
ClearFramesAndHistory();
} else {
RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
<< id.picture_id << ":"
<< static_cast<int>(id.spatial_layer)
<< ") could not be inserted due to the frame "
<< "buffer being full, dropping frame.";
return last_continuous_picture_id;
}
}
if (last_decoded_frame_it_ != frames_.end() &&
id <= last_decoded_frame_it_->first) {
if (AheadOf(frame->Timestamp(), last_decoded_frame_timestamp_) &&
frame->is_keyframe()) {
// If this frame has a newer timestamp but an earlier picture id then we
// assume there has been a jump in the picture id due to some encoder
// reconfiguration or some other reason. Even though this is not according
// to spec we can still continue to decode from this frame if it is a
// keyframe.
RTC_LOG(LS_WARNING)
<< "A jump in picture id was detected, clearing buffer.";
ClearFramesAndHistory();
last_continuous_picture_id = -1;
} else {
RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
<< id.picture_id << ":"
<< static_cast<int>(id.spatial_layer)
<< ") inserted after frame ("
<< last_decoded_frame_it_->first.picture_id << ":"
<< static_cast<int>(
last_decoded_frame_it_->first.spatial_layer)
<< ") was handed off for decoding, dropping frame.";
return last_continuous_picture_id;
}
}
// Test if inserting this frame would cause the order of the frames to become
// ambiguous (covering more than half the interval of 2^16). This can happen
// when the picture id make large jumps mid stream.
if (!frames_.empty() && id < frames_.begin()->first &&
frames_.rbegin()->first < id) {
RTC_LOG(LS_WARNING)
<< "A jump in picture id was detected, clearing buffer.";
ClearFramesAndHistory();
last_continuous_picture_id = -1;
}
auto info = frames_.emplace(id, FrameInfo()).first;
if (info->second.frame) {
RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
<< id.picture_id << ":"
<< static_cast<int>(id.spatial_layer)
<< ") already inserted, dropping frame.";
return last_continuous_picture_id;
}
if (!UpdateFrameInfoWithIncomingFrame(*frame, info))
return last_continuous_picture_id;
UpdatePlayoutDelays(*frame);
info->second.frame = std::move(frame);
++num_frames_buffered_;
if (info->second.num_missing_continuous == 0) {
info->second.continuous = true;
PropagateContinuity(info);
last_continuous_picture_id = last_continuous_frame_it_->first.picture_id;
// Since we now have new continuous frames there might be a better frame
// to return from NextFrame. Signal that thread so that it again can choose
// which frame to return.
new_continuous_frame_event_.Set();
}
return last_continuous_picture_id;
}
void FrameBuffer::PropagateContinuity(FrameMap::iterator start) {
TRACE_EVENT0("webrtc", "FrameBuffer::PropagateContinuity");
RTC_DCHECK(start->second.continuous);
if (last_continuous_frame_it_ == frames_.end())
last_continuous_frame_it_ = start;
std::queue<FrameMap::iterator> continuous_frames;
continuous_frames.push(start);
// A simple BFS to traverse continuous frames.
while (!continuous_frames.empty()) {
auto frame = continuous_frames.front();
continuous_frames.pop();
if (last_continuous_frame_it_->first < frame->first)
last_continuous_frame_it_ = frame;
// Loop through all dependent frames, and if that frame no longer has
// any unfulfilled dependencies then that frame is continuous as well.
for (size_t d = 0; d < frame->second.num_dependent_frames; ++d) {
auto frame_ref = frames_.find(frame->second.dependent_frames[d]);
RTC_DCHECK(frame_ref != frames_.end());
// TODO(philipel): Look into why we've seen this happen.
if (frame_ref != frames_.end()) {
--frame_ref->second.num_missing_continuous;
if (frame_ref->second.num_missing_continuous == 0) {
frame_ref->second.continuous = true;
continuous_frames.push(frame_ref);
}
}
}
}
}
void FrameBuffer::PropagateDecodability(const FrameInfo& info) {
TRACE_EVENT0("webrtc", "FrameBuffer::PropagateDecodability");
RTC_CHECK(info.num_dependent_frames < FrameInfo::kMaxNumDependentFrames);
for (size_t d = 0; d < info.num_dependent_frames; ++d) {
auto ref_info = frames_.find(info.dependent_frames[d]);
RTC_DCHECK(ref_info != frames_.end());
// TODO(philipel): Look into why we've seen this happen.
if (ref_info != frames_.end()) {
RTC_DCHECK_GT(ref_info->second.num_missing_decodable, 0U);
--ref_info->second.num_missing_decodable;
}
}
}
void FrameBuffer::AdvanceLastDecodedFrame(FrameMap::iterator decoded) {
TRACE_EVENT0("webrtc", "FrameBuffer::AdvanceLastDecodedFrame");
if (last_decoded_frame_it_ == frames_.end()) {
last_decoded_frame_it_ = frames_.begin();
} else {
RTC_DCHECK(last_decoded_frame_it_->first < decoded->first);
++last_decoded_frame_it_;
}
--num_frames_buffered_;
++num_frames_history_;
// First, delete non-decoded frames from the history.
while (last_decoded_frame_it_ != decoded) {
if (last_decoded_frame_it_->second.frame)
--num_frames_buffered_;
last_decoded_frame_it_ = frames_.erase(last_decoded_frame_it_);
}
// Then remove old history if we have too much history saved.
if (num_frames_history_ > kMaxFramesHistory) {
frames_.erase(frames_.begin());
--num_frames_history_;
}
}
bool FrameBuffer::UpdateFrameInfoWithIncomingFrame(const EncodedFrame& frame,
FrameMap::iterator info) {
TRACE_EVENT0("webrtc", "FrameBuffer::UpdateFrameInfoWithIncomingFrame");
const VideoLayerFrameId& id = frame.id;
RTC_DCHECK(last_decoded_frame_it_ == frames_.end() ||
last_decoded_frame_it_->first < info->first);
// In this function we determine how many missing dependencies this |frame|
// has to become continuous/decodable. If a frame that this |frame| depend
// on has already been decoded then we can ignore that dependency since it has
// already been fulfilled.
//
// For all other frames we will register a backwards reference to this |frame|
// so that |num_missing_continuous| and |num_missing_decodable| can be
// decremented as frames become continuous/are decoded.
struct Dependency {
VideoLayerFrameId id;
bool continuous;
};
std::vector<Dependency> not_yet_fulfilled_dependencies;
// Find all dependencies that have not yet been fulfilled.
for (size_t i = 0; i < frame.num_references; ++i) {
VideoLayerFrameId ref_key(frame.references[i], frame.id.spatial_layer);
auto ref_info = frames_.find(ref_key);
// Does |frame| depend on a frame earlier than the last decoded one?
if (last_decoded_frame_it_ != frames_.end() &&
ref_key <= last_decoded_frame_it_->first) {
// Was that frame decoded? If not, this |frame| will never become
// decodable.
if (ref_info == frames_.end()) {
int64_t now_ms = clock_->TimeInMilliseconds();
if (last_log_non_decoded_ms_ + kLogNonDecodedIntervalMs < now_ms) {
RTC_LOG(LS_WARNING)
<< "Frame with (picture_id:spatial_id) (" << id.picture_id << ":"
<< static_cast<int>(id.spatial_layer)
<< ") depends on a non-decoded frame more previous than"
<< " the last decoded frame, dropping frame.";
last_log_non_decoded_ms_ = now_ms;
}
return false;
}
} else {
bool ref_continuous =
ref_info != frames_.end() && ref_info->second.continuous;
not_yet_fulfilled_dependencies.push_back({ref_key, ref_continuous});
}
}
// Does |frame| depend on the lower spatial layer?
if (frame.inter_layer_predicted) {
VideoLayerFrameId ref_key(frame.id.picture_id, frame.id.spatial_layer - 1);
auto ref_info = frames_.find(ref_key);
bool lower_layer_continuous =
ref_info != frames_.end() && ref_info->second.continuous;
bool lower_layer_decoded = last_decoded_frame_it_ != frames_.end() &&
last_decoded_frame_it_->first == ref_key;
if (!lower_layer_continuous || !lower_layer_decoded) {
not_yet_fulfilled_dependencies.push_back(
{ref_key, lower_layer_continuous});
}
}
info->second.num_missing_continuous = not_yet_fulfilled_dependencies.size();
info->second.num_missing_decodable = not_yet_fulfilled_dependencies.size();
for (const Dependency& dep : not_yet_fulfilled_dependencies) {
if (dep.continuous)
--info->second.num_missing_continuous;
// At this point we know we want to insert this frame, so here we
// intentionally get or create the FrameInfo for this dependency.
FrameInfo* dep_info = &frames_[dep.id];
if (dep_info->num_dependent_frames <
(FrameInfo::kMaxNumDependentFrames - 1)) {
dep_info->dependent_frames[dep_info->num_dependent_frames] = id;
++dep_info->num_dependent_frames;
} else {
RTC_LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) ("
<< dep.id.picture_id << ":"
<< static_cast<int>(dep.id.spatial_layer)
<< ") is referenced by too many frames.";
}
}
return true;
}
void FrameBuffer::UpdateJitterDelay() {
TRACE_EVENT0("webrtc", "FrameBuffer::UpdateJitterDelay");
if (!stats_callback_)
return;
int decode_ms;
int max_decode_ms;
int current_delay_ms;
int target_delay_ms;
int jitter_buffer_ms;
int min_playout_delay_ms;
int render_delay_ms;
if (timing_->GetTimings(&decode_ms, &max_decode_ms, &current_delay_ms,
&target_delay_ms, &jitter_buffer_ms,
&min_playout_delay_ms, &render_delay_ms)) {
stats_callback_->OnFrameBufferTimingsUpdated(
decode_ms, max_decode_ms, current_delay_ms, target_delay_ms,
jitter_buffer_ms, min_playout_delay_ms, render_delay_ms);
}
}
void FrameBuffer::UpdateTimingFrameInfo() {
TRACE_EVENT0("webrtc", "FrameBuffer::UpdateTimingFrameInfo");
absl::optional<TimingFrameInfo> info = timing_->GetTimingFrameInfo();
if (info && stats_callback_)
stats_callback_->OnTimingFrameInfoUpdated(*info);
}
void FrameBuffer::ClearFramesAndHistory() {
TRACE_EVENT0("webrtc", "FrameBuffer::ClearFramesAndHistory");
frames_.clear();
last_decoded_frame_it_ = frames_.end();
last_continuous_frame_it_ = frames_.end();
next_frame_it_ = frames_.end();
num_frames_history_ = 0;
num_frames_buffered_ = 0;
}
FrameBuffer::FrameInfo::FrameInfo() = default;
FrameBuffer::FrameInfo::FrameInfo(FrameInfo&&) = default;
FrameBuffer::FrameInfo::~FrameInfo() = default;
} // namespace video_coding
} // namespace webrtc