webrtc/modules/audio_coding/neteq/tools/neteq_quality_test.cc
Ivo Creusen 39cf3c723e Clean up the NetEqFactory API.
This CL decouples NetEqFactory and AudioDecoderFactory.
AudioDecoderFactory is used in more places than just inside of NetEq, so
decoupling these makes sense.

Bug: webrtc:11005
Change-Id: I78dd856e4248e398e69a65816b062ef30555b055
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/161005
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Commit-Queue: Ivo Creusen <ivoc@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#29961}
2019-11-29 14:04:44 +00:00

474 lines
17 KiB
C++

/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/neteq/tools/neteq_quality_test.h"
#include <stdio.h>
#include <cmath>
#include "absl/flags/flag.h"
#include "modules/audio_coding/neteq/default_neteq_factory.h"
#include "modules/audio_coding/neteq/tools/neteq_quality_test.h"
#include "modules/audio_coding/neteq/tools/output_audio_file.h"
#include "modules/audio_coding/neteq/tools/output_wav_file.h"
#include "modules/audio_coding/neteq/tools/resample_input_audio_file.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/clock.h"
#include "test/testsupport/file_utils.h"
const std::string& DefaultInFilename() {
static const std::string path =
::webrtc::test::ResourcePath("audio_coding/speech_mono_16kHz", "pcm");
return path;
}
const std::string& DefaultOutFilename() {
static const std::string path =
::webrtc::test::OutputPath() + "neteq_quality_test_out.pcm";
return path;
}
ABSL_FLAG(
std::string,
in_filename,
DefaultInFilename(),
"Filename for input audio (specify sample rate with --input_sample_rate, "
"and channels with --channels).");
ABSL_FLAG(int, input_sample_rate, 16000, "Sample rate of input file in Hz.");
ABSL_FLAG(int, channels, 1, "Number of channels in input audio.");
ABSL_FLAG(std::string,
out_filename,
DefaultOutFilename(),
"Name of output audio file.");
ABSL_FLAG(
int,
runtime_ms,
10000,
"Simulated runtime (milliseconds). -1 will consume the complete file.");
ABSL_FLAG(int, packet_loss_rate, 10, "Percentile of packet loss.");
ABSL_FLAG(int,
random_loss_mode,
::webrtc::test::kUniformLoss,
"Random loss mode: 0--no loss, 1--uniform loss, 2--Gilbert Elliot "
"loss, 3--fixed loss.");
ABSL_FLAG(int,
burst_length,
30,
"Burst length in milliseconds, only valid for Gilbert Elliot loss.");
ABSL_FLAG(float, drift_factor, 0.0, "Time drift factor.");
ABSL_FLAG(int,
preload_packets,
1,
"Preload the buffer with this many packets.");
ABSL_FLAG(std::string,
loss_events,
"",
"List of loss events time and duration separated by comma: "
"<first_event_time> <first_event_duration>, <second_event_time> "
"<second_event_duration>, ...");
namespace webrtc {
namespace test {
namespace {
std::unique_ptr<NetEq> CreateNetEq(
const NetEq::Config& config,
Clock* clock,
const rtc::scoped_refptr<AudioDecoderFactory>& decoder_factory) {
return DefaultNetEqFactory().CreateNetEq(config, decoder_factory, clock);
}
} // namespace
const uint8_t kPayloadType = 95;
const int kOutputSizeMs = 10;
const int kInitSeed = 0x12345678;
const int kPacketLossTimeUnitMs = 10;
// Common validator for file names.
static bool ValidateFilename(const std::string& value, bool is_output) {
if (!is_output) {
RTC_CHECK_NE(value.substr(value.find_last_of(".") + 1), "wav")
<< "WAV file input is not supported";
}
FILE* fid =
is_output ? fopen(value.c_str(), "wb") : fopen(value.c_str(), "rb");
if (fid == nullptr)
return false;
fclose(fid);
return true;
}
// ProbTrans00Solver() is to calculate the transition probability from no-loss
// state to itself in a modified Gilbert Elliot packet loss model. The result is
// to achieve the target packet loss rate |loss_rate|, when a packet is not
// lost only if all |units| drawings within the duration of the packet result in
// no-loss.
static double ProbTrans00Solver(int units,
double loss_rate,
double prob_trans_10) {
if (units == 1)
return prob_trans_10 / (1.0f - loss_rate) - prob_trans_10;
// 0 == prob_trans_00 ^ (units - 1) + (1 - loss_rate) / prob_trans_10 *
// prob_trans_00 - (1 - loss_rate) * (1 + 1 / prob_trans_10).
// There is a unique solution between 0.0 and 1.0, due to the monotonicity and
// an opposite sign at 0.0 and 1.0.
// For simplicity, we reformulate the equation as
// f(x) = x ^ (units - 1) + a x + b.
// Its derivative is
// f'(x) = (units - 1) x ^ (units - 2) + a.
// The derivative is strictly greater than 0 when x is between 0 and 1.
// We use Newton's method to solve the equation, iteration is
// x(k+1) = x(k) - f(x) / f'(x);
const double kPrecision = 0.001f;
const int kIterations = 100;
const double a = (1.0f - loss_rate) / prob_trans_10;
const double b = (loss_rate - 1.0f) * (1.0f + 1.0f / prob_trans_10);
double x = 0.0; // Starting point;
double f = b;
double f_p;
int iter = 0;
while ((f >= kPrecision || f <= -kPrecision) && iter < kIterations) {
f_p = (units - 1.0f) * std::pow(x, units - 2) + a;
x -= f / f_p;
if (x > 1.0f) {
x = 1.0f;
} else if (x < 0.0f) {
x = 0.0f;
}
f = std::pow(x, units - 1) + a * x + b;
iter++;
}
return x;
}
NetEqQualityTest::NetEqQualityTest(
int block_duration_ms,
int in_sampling_khz,
int out_sampling_khz,
const SdpAudioFormat& format,
const rtc::scoped_refptr<AudioDecoderFactory>& decoder_factory)
: audio_format_(format),
channels_(absl::GetFlag(FLAGS_channels)),
decoded_time_ms_(0),
decodable_time_ms_(0),
drift_factor_(absl::GetFlag(FLAGS_drift_factor)),
packet_loss_rate_(absl::GetFlag(FLAGS_packet_loss_rate)),
block_duration_ms_(block_duration_ms),
in_sampling_khz_(in_sampling_khz),
out_sampling_khz_(out_sampling_khz),
in_size_samples_(
static_cast<size_t>(in_sampling_khz_ * block_duration_ms_)),
payload_size_bytes_(0),
max_payload_bytes_(0),
in_file_(
new ResampleInputAudioFile(absl::GetFlag(FLAGS_in_filename),
absl::GetFlag(FLAGS_input_sample_rate),
in_sampling_khz * 1000,
absl::GetFlag(FLAGS_runtime_ms) > 0)),
rtp_generator_(
new RtpGenerator(in_sampling_khz_, 0, 0, decodable_time_ms_)),
total_payload_size_bytes_(0) {
// Flag validation
RTC_CHECK(ValidateFilename(absl::GetFlag(FLAGS_in_filename), false))
<< "Invalid input filename.";
RTC_CHECK(absl::GetFlag(FLAGS_input_sample_rate) == 8000 ||
absl::GetFlag(FLAGS_input_sample_rate) == 16000 ||
absl::GetFlag(FLAGS_input_sample_rate) == 32000 ||
absl::GetFlag(FLAGS_input_sample_rate) == 48000)
<< "Invalid sample rate should be 8000, 16000, 32000 or 48000 Hz.";
RTC_CHECK_EQ(absl::GetFlag(FLAGS_channels), 1)
<< "Invalid number of channels, current support only 1.";
RTC_CHECK(ValidateFilename(absl::GetFlag(FLAGS_out_filename), true))
<< "Invalid output filename.";
RTC_CHECK(absl::GetFlag(FLAGS_packet_loss_rate) >= 0 &&
absl::GetFlag(FLAGS_packet_loss_rate) <= 100)
<< "Invalid packet loss percentile, should be between 0 and 100.";
RTC_CHECK(absl::GetFlag(FLAGS_random_loss_mode) >= 0 &&
absl::GetFlag(FLAGS_random_loss_mode) < kLastLossMode)
<< "Invalid random packet loss mode, should be between 0 and "
<< kLastLossMode - 1 << ".";
RTC_CHECK_GE(absl::GetFlag(FLAGS_burst_length), kPacketLossTimeUnitMs)
<< "Invalid burst length, should be greater than or equal to "
<< kPacketLossTimeUnitMs << " ms.";
RTC_CHECK_GT(absl::GetFlag(FLAGS_drift_factor), -0.1)
<< "Invalid drift factor, should be greater than -0.1.";
RTC_CHECK_GE(absl::GetFlag(FLAGS_preload_packets), 0)
<< "Invalid number of packets to preload; must be non-negative.";
const std::string out_filename = absl::GetFlag(FLAGS_out_filename);
const std::string log_filename = out_filename + ".log";
log_file_.open(log_filename.c_str(), std::ofstream::out);
RTC_CHECK(log_file_.is_open());
if (out_filename.size() >= 4 &&
out_filename.substr(out_filename.size() - 4) == ".wav") {
// Open a wav file.
output_.reset(
new webrtc::test::OutputWavFile(out_filename, 1000 * out_sampling_khz));
} else {
// Open a pcm file.
output_.reset(new webrtc::test::OutputAudioFile(out_filename));
}
NetEq::Config config;
config.sample_rate_hz = out_sampling_khz_ * 1000;
neteq_ = CreateNetEq(config, Clock::GetRealTimeClock(), decoder_factory);
max_payload_bytes_ = in_size_samples_ * channels_ * sizeof(int16_t);
in_data_.reset(new int16_t[in_size_samples_ * channels_]);
}
NetEqQualityTest::~NetEqQualityTest() {
log_file_.close();
}
bool NoLoss::Lost(int now_ms) {
return false;
}
UniformLoss::UniformLoss(double loss_rate) : loss_rate_(loss_rate) {}
bool UniformLoss::Lost(int now_ms) {
int drop_this = rand();
return (drop_this < loss_rate_ * RAND_MAX);
}
GilbertElliotLoss::GilbertElliotLoss(double prob_trans_11, double prob_trans_01)
: prob_trans_11_(prob_trans_11),
prob_trans_01_(prob_trans_01),
lost_last_(false),
uniform_loss_model_(new UniformLoss(0)) {}
GilbertElliotLoss::~GilbertElliotLoss() {}
bool GilbertElliotLoss::Lost(int now_ms) {
// Simulate bursty channel (Gilbert model).
// (1st order) Markov chain model with memory of the previous/last
// packet state (lost or received).
if (lost_last_) {
// Previous packet was not received.
uniform_loss_model_->set_loss_rate(prob_trans_11_);
return lost_last_ = uniform_loss_model_->Lost(now_ms);
} else {
uniform_loss_model_->set_loss_rate(prob_trans_01_);
return lost_last_ = uniform_loss_model_->Lost(now_ms);
}
}
FixedLossModel::FixedLossModel(
std::set<FixedLossEvent, FixedLossEventCmp> loss_events)
: loss_events_(loss_events) {
loss_events_it_ = loss_events_.begin();
}
FixedLossModel::~FixedLossModel() {}
bool FixedLossModel::Lost(int now_ms) {
if (loss_events_it_ != loss_events_.end() &&
now_ms > loss_events_it_->start_ms) {
if (now_ms <= loss_events_it_->start_ms + loss_events_it_->duration_ms) {
return true;
} else {
++loss_events_it_;
return false;
}
}
return false;
}
void NetEqQualityTest::SetUp() {
ASSERT_TRUE(neteq_->RegisterPayloadType(kPayloadType, audio_format_));
rtp_generator_->set_drift_factor(drift_factor_);
int units = block_duration_ms_ / kPacketLossTimeUnitMs;
switch (absl::GetFlag(FLAGS_random_loss_mode)) {
case kUniformLoss: {
// |unit_loss_rate| is the packet loss rate for each unit time interval
// (kPacketLossTimeUnitMs). Since a packet loss event is generated if any
// of |block_duration_ms_ / kPacketLossTimeUnitMs| unit time intervals of
// a full packet duration is drawn with a loss, |unit_loss_rate| fulfills
// (1 - unit_loss_rate) ^ (block_duration_ms_ / kPacketLossTimeUnitMs) ==
// 1 - packet_loss_rate.
double unit_loss_rate =
(1.0 - std::pow(1.0 - 0.01 * packet_loss_rate_, 1.0 / units));
loss_model_.reset(new UniformLoss(unit_loss_rate));
break;
}
case kGilbertElliotLoss: {
// |FLAGS_burst_length| should be integer times of kPacketLossTimeUnitMs.
ASSERT_EQ(0, absl::GetFlag(FLAGS_burst_length) % kPacketLossTimeUnitMs);
// We do not allow 100 percent packet loss in Gilbert Elliot model, which
// makes no sense.
ASSERT_GT(100, packet_loss_rate_);
// To guarantee the overall packet loss rate, transition probabilities
// need to satisfy:
// pi_0 * (1 - prob_trans_01_) ^ units +
// pi_1 * prob_trans_10_ ^ (units - 1) == 1 - loss_rate
// pi_0 = prob_trans_10 / (prob_trans_10 + prob_trans_01_)
// is the stationary state probability of no-loss
// pi_1 = prob_trans_01_ / (prob_trans_10 + prob_trans_01_)
// is the stationary state probability of loss
// After a derivation prob_trans_00 should satisfy:
// prob_trans_00 ^ (units - 1) = (loss_rate - 1) / prob_trans_10 *
// prob_trans_00 + (1 - loss_rate) * (1 + 1 / prob_trans_10).
double loss_rate = 0.01f * packet_loss_rate_;
double prob_trans_10 =
1.0f * kPacketLossTimeUnitMs / absl::GetFlag(FLAGS_burst_length);
double prob_trans_00 = ProbTrans00Solver(units, loss_rate, prob_trans_10);
loss_model_.reset(
new GilbertElliotLoss(1.0f - prob_trans_10, 1.0f - prob_trans_00));
break;
}
case kFixedLoss: {
std::istringstream loss_events_stream(absl::GetFlag(FLAGS_loss_events));
std::string loss_event_string;
std::set<FixedLossEvent, FixedLossEventCmp> loss_events;
while (std::getline(loss_events_stream, loss_event_string, ',')) {
std::vector<int> loss_event_params;
std::istringstream loss_event_params_stream(loss_event_string);
std::copy(std::istream_iterator<int>(loss_event_params_stream),
std::istream_iterator<int>(),
std::back_inserter(loss_event_params));
RTC_CHECK_EQ(loss_event_params.size(), 2);
auto result = loss_events.insert(
FixedLossEvent(loss_event_params[0], loss_event_params[1]));
RTC_CHECK(result.second);
}
RTC_CHECK_GT(loss_events.size(), 0);
loss_model_.reset(new FixedLossModel(loss_events));
break;
}
default: {
loss_model_.reset(new NoLoss);
break;
}
}
// Make sure that the packet loss profile is same for all derived tests.
srand(kInitSeed);
}
std::ofstream& NetEqQualityTest::Log() {
return log_file_;
}
bool NetEqQualityTest::PacketLost() {
int cycles = block_duration_ms_ / kPacketLossTimeUnitMs;
// The loop is to make sure that codecs with different block lengths share the
// same packet loss profile.
bool lost = false;
for (int idx = 0; idx < cycles; idx++) {
if (loss_model_->Lost(decoded_time_ms_)) {
// The packet will be lost if any of the drawings indicates a loss, but
// the loop has to go on to make sure that codecs with different block
// lengths keep the same pace.
lost = true;
}
}
return lost;
}
int NetEqQualityTest::Transmit() {
int packet_input_time_ms = rtp_generator_->GetRtpHeader(
kPayloadType, in_size_samples_, &rtp_header_);
Log() << "Packet of size " << payload_size_bytes_ << " bytes, for frame at "
<< packet_input_time_ms << " ms ";
if (payload_size_bytes_ > 0) {
if (!PacketLost()) {
int ret = neteq_->InsertPacket(
rtp_header_,
rtc::ArrayView<const uint8_t>(payload_.data(), payload_size_bytes_));
if (ret != NetEq::kOK)
return -1;
Log() << "was sent.";
} else {
Log() << "was lost.";
}
}
Log() << std::endl;
return packet_input_time_ms;
}
int NetEqQualityTest::DecodeBlock() {
bool muted;
int ret = neteq_->GetAudio(&out_frame_, &muted);
RTC_CHECK(!muted);
if (ret != NetEq::kOK) {
return -1;
} else {
RTC_DCHECK_EQ(out_frame_.num_channels_, channels_);
RTC_DCHECK_EQ(out_frame_.samples_per_channel_,
static_cast<size_t>(kOutputSizeMs * out_sampling_khz_));
RTC_CHECK(output_->WriteArray(
out_frame_.data(),
out_frame_.samples_per_channel_ * out_frame_.num_channels_));
return static_cast<int>(out_frame_.samples_per_channel_);
}
}
void NetEqQualityTest::Simulate() {
int audio_size_samples;
bool end_of_input = false;
int runtime_ms = absl::GetFlag(FLAGS_runtime_ms) >= 0
? absl::GetFlag(FLAGS_runtime_ms)
: INT_MAX;
while (!end_of_input && decoded_time_ms_ < runtime_ms) {
// Preload the buffer if needed.
while (decodable_time_ms_ -
absl::GetFlag(FLAGS_preload_packets) * block_duration_ms_ <
decoded_time_ms_) {
if (!in_file_->Read(in_size_samples_ * channels_, &in_data_[0])) {
end_of_input = true;
ASSERT_TRUE(end_of_input && absl::GetFlag(FLAGS_runtime_ms) < 0);
break;
}
payload_.Clear();
payload_size_bytes_ = EncodeBlock(&in_data_[0], in_size_samples_,
&payload_, max_payload_bytes_);
total_payload_size_bytes_ += payload_size_bytes_;
decodable_time_ms_ = Transmit() + block_duration_ms_;
}
audio_size_samples = DecodeBlock();
if (audio_size_samples > 0) {
decoded_time_ms_ += audio_size_samples / out_sampling_khz_;
}
}
Log() << "Average bit rate was "
<< 8.0f * total_payload_size_bytes_ / absl::GetFlag(FLAGS_runtime_ms)
<< " kbps" << std::endl;
}
} // namespace test
} // namespace webrtc