webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
Gustaf Ullberg e47433f017 AEC3: Remove legacy render buffering
This CL removes the legacy, no longer used, render buffering code. It
also removes four unused parameters from the AEC3 config. The change
is tested for bit-exactness.

Bug: webrtc:8671
Change-Id: I2bb6cb7a1097863f228767d757d551c00593bb00
Reviewed-on: https://webrtc-review.googlesource.com/c/119701
Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org>
Reviewed-by: Per Åhgren <peah@webrtc.org>
Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#26399}
2019-01-25 08:31:12 +00:00

218 lines
8 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/aec3_fft.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "test/gtest.h"
namespace webrtc {
// Verify the general functionality of AecState
TEST(AecState, NormalUsage) {
ApmDataDumper data_dumper(42);
EchoCanceller3Config config;
AecState state(config);
absl::optional<DelayEstimate> delay_estimate =
DelayEstimate(DelayEstimate::Quality::kRefined, 10);
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, 3));
std::array<float, kFftLengthBy2Plus1> E2_main = {};
std::array<float, kFftLengthBy2Plus1> Y2 = {};
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
EchoPathVariability echo_path_variability(
false, EchoPathVariability::DelayAdjustment::kNone, false);
SubtractorOutput output;
output.Reset();
std::array<float, kBlockSize> y;
Aec3Fft fft;
output.s_main.fill(100.f);
output.e_main.fill(100.f);
y.fill(1000.f);
std::vector<std::array<float, kFftLengthBy2Plus1>>
converged_filter_frequency_response(10);
for (auto& v : converged_filter_frequency_response) {
v.fill(0.01f);
}
std::vector<std::array<float, kFftLengthBy2Plus1>>
diverged_filter_frequency_response = converged_filter_frequency_response;
converged_filter_frequency_response[2].fill(100.f);
converged_filter_frequency_response[2][0] = 1.f;
std::vector<float> impulse_response(
GetTimeDomainLength(config.filter.main.length_blocks), 0.f);
// Verify that linear AEC usability is true when the filter is converged
std::fill(x[0].begin(), x[0].end(), 101.f);
for (int k = 0; k < 3000; ++k) {
render_delay_buffer->Insert(x);
output.ComputeMetrics(y);
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_main, Y2, output, y);
}
EXPECT_TRUE(state.UsableLinearEstimate());
// Verify that linear AEC usability becomes false after an echo path change is
// reported
output.ComputeMetrics(y);
state.HandleEchoPathChange(EchoPathVariability(
false, EchoPathVariability::DelayAdjustment::kBufferReadjustment, false));
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_main, Y2, output, y);
EXPECT_FALSE(state.UsableLinearEstimate());
// Verify that the active render detection works as intended.
std::fill(x[0].begin(), x[0].end(), 101.f);
render_delay_buffer->Insert(x);
output.ComputeMetrics(y);
state.HandleEchoPathChange(EchoPathVariability(
true, EchoPathVariability::DelayAdjustment::kNewDetectedDelay, false));
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_main, Y2, output, y);
EXPECT_FALSE(state.ActiveRender());
for (int k = 0; k < 1000; ++k) {
render_delay_buffer->Insert(x);
output.ComputeMetrics(y);
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_main, Y2, output, y);
}
EXPECT_TRUE(state.ActiveRender());
// Verify that the ERL is properly estimated
for (auto& x_k : x) {
x_k = std::vector<float>(kBlockSize, 0.f);
}
x[0][0] = 5000.f;
for (size_t k = 0;
k < render_delay_buffer->GetRenderBuffer()->GetFftBuffer().size(); ++k) {
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
}
Y2.fill(10.f * 10000.f * 10000.f);
for (size_t k = 0; k < 1000; ++k) {
output.ComputeMetrics(y);
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_main, Y2, output, y);
}
ASSERT_TRUE(state.UsableLinearEstimate());
const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
EXPECT_EQ(erl[0], erl[1]);
for (size_t k = 1; k < erl.size() - 1; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1);
}
EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]);
// Verify that the ERLE is properly estimated
E2_main.fill(1.f * 10000.f * 10000.f);
Y2.fill(10.f * E2_main[0]);
for (size_t k = 0; k < 1000; ++k) {
output.ComputeMetrics(y);
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_main, Y2, output, y);
}
ASSERT_TRUE(state.UsableLinearEstimate());
{
// Note that the render spectrum is built so it does not have energy in the
// odd bands but just in the even bands.
const auto& erle = state.Erle();
EXPECT_EQ(erle[0], erle[1]);
constexpr size_t kLowFrequencyLimit = 32;
for (size_t k = 2; k < kLowFrequencyLimit; k = k + 2) {
EXPECT_NEAR(4.f, erle[k], 0.1);
}
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; k = k + 2) {
EXPECT_NEAR(1.5f, erle[k], 0.1);
}
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
}
E2_main.fill(1.f * 10000.f * 10000.f);
Y2.fill(5.f * E2_main[0]);
for (size_t k = 0; k < 1000; ++k) {
output.ComputeMetrics(y);
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_main, Y2, output, y);
}
ASSERT_TRUE(state.UsableLinearEstimate());
{
const auto& erle = state.Erle();
EXPECT_EQ(erle[0], erle[1]);
constexpr size_t kLowFrequencyLimit = 32;
for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 4.f : 1.f, erle[k], 0.1);
}
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
}
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
}
}
// Verifies the delay for a converged filter is correctly identified.
TEST(AecState, ConvergedFilterDelay) {
constexpr int kFilterLengthBlocks = 10;
EchoCanceller3Config config;
AecState state(config);
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, 3));
absl::optional<DelayEstimate> delay_estimate;
std::array<float, kFftLengthBy2Plus1> E2_main;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kBlockSize> x;
EchoPathVariability echo_path_variability(
false, EchoPathVariability::DelayAdjustment::kNone, false);
SubtractorOutput output;
output.Reset();
std::array<float, kBlockSize> y;
output.s_main.fill(100.f);
x.fill(0.f);
y.fill(0.f);
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(
kFilterLengthBlocks);
for (auto& v : frequency_response) {
v.fill(0.01f);
}
std::vector<float> impulse_response(
GetTimeDomainLength(config.filter.main.length_blocks), 0.f);
// Verify that the filter delay for a converged filter is properly identified.
for (int k = 0; k < kFilterLengthBlocks; ++k) {
std::fill(impulse_response.begin(), impulse_response.end(), 0.f);
impulse_response[k * kBlockSize + 1] = 1.f;
state.HandleEchoPathChange(echo_path_variability);
output.ComputeMetrics(y);
state.Update(delay_estimate, frequency_response, impulse_response,
*render_delay_buffer->GetRenderBuffer(), E2_main, Y2, output,
y);
}
}
} // namespace webrtc