mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-15 14:50:39 +01:00

This CL implements Welford's algorithm for a numerically stable computation of the variance. This implementation is plugged in SamplesStatsCounter class (adapter pattern). A 'NumericalStability' unit test has been added, whose previous implementation of SamplesStatsCounter failed to pass. Follow-up CLs will factorize more occurences of duplicated and misbehaved computations. Bug: webrtc:10412 Change-Id: Id807c3d34e9c780fb1cbd769d30b655c575c88ac Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/131394 Commit-Queue: Yves Gerey <yvesg@google.com> Reviewed-by: Artem Titov <titovartem@webrtc.org> Reviewed-by: Karl Wiberg <kwiberg@webrtc.org> Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org> Cr-Commit-Position: refs/heads/master@{#27547}
151 lines
4.7 KiB
C++
151 lines
4.7 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "rtc_base/numerics/samples_stats_counter.h"
|
|
|
|
#include <math.h>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include "absl/algorithm/container.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
SamplesStatsCounter CreateStatsFilledWithIntsFrom1ToN(int n) {
|
|
std::vector<double> data;
|
|
for (int i = 1; i <= n; i++) {
|
|
data.push_back(i);
|
|
}
|
|
absl::c_shuffle(data, std::mt19937(std::random_device()()));
|
|
|
|
SamplesStatsCounter stats;
|
|
for (double v : data) {
|
|
stats.AddSample(v);
|
|
}
|
|
return stats;
|
|
}
|
|
|
|
// Add n samples drawn from uniform distribution in [a;b].
|
|
SamplesStatsCounter CreateStatsFromUniformDistribution(int n,
|
|
double a,
|
|
double b) {
|
|
std::mt19937 gen{std::random_device()()};
|
|
std::uniform_real_distribution<> dis(a, b);
|
|
|
|
SamplesStatsCounter stats;
|
|
for (int i = 1; i <= n; i++) {
|
|
stats.AddSample(dis(gen));
|
|
}
|
|
return stats;
|
|
}
|
|
|
|
class SamplesStatsCounterTest : public ::testing::TestWithParam<int> {};
|
|
|
|
constexpr int SIZE_FOR_MERGE = 10;
|
|
|
|
} // namespace
|
|
|
|
TEST(SamplesStatsCounter, FullSimpleTest) {
|
|
SamplesStatsCounter stats = CreateStatsFilledWithIntsFrom1ToN(100);
|
|
|
|
EXPECT_TRUE(!stats.IsEmpty());
|
|
EXPECT_DOUBLE_EQ(stats.GetMin(), 1.0);
|
|
EXPECT_DOUBLE_EQ(stats.GetMax(), 100.0);
|
|
EXPECT_DOUBLE_EQ(stats.GetAverage(), 50.5);
|
|
for (int i = 1; i <= 100; i++) {
|
|
double p = i / 100.0;
|
|
EXPECT_GE(stats.GetPercentile(p), i);
|
|
EXPECT_LT(stats.GetPercentile(p), i + 1);
|
|
}
|
|
}
|
|
|
|
TEST(SamplesStatsCounter, VarianceAndDeviation) {
|
|
SamplesStatsCounter stats;
|
|
stats.AddSample(2);
|
|
stats.AddSample(2);
|
|
stats.AddSample(-1);
|
|
stats.AddSample(5);
|
|
|
|
EXPECT_DOUBLE_EQ(stats.GetAverage(), 2.0);
|
|
EXPECT_DOUBLE_EQ(stats.GetVariance(), 4.5);
|
|
EXPECT_DOUBLE_EQ(stats.GetStandardDeviation(), sqrt(4.5));
|
|
}
|
|
|
|
TEST(SamplesStatsCounter, FractionPercentile) {
|
|
SamplesStatsCounter stats = CreateStatsFilledWithIntsFrom1ToN(5);
|
|
|
|
EXPECT_DOUBLE_EQ(stats.GetPercentile(0.5), 3);
|
|
}
|
|
|
|
TEST(SamplesStatsCounter, TestBorderValues) {
|
|
SamplesStatsCounter stats = CreateStatsFilledWithIntsFrom1ToN(5);
|
|
|
|
EXPECT_GE(stats.GetPercentile(0.01), 1);
|
|
EXPECT_LT(stats.GetPercentile(0.01), 2);
|
|
EXPECT_DOUBLE_EQ(stats.GetPercentile(1.0), 5);
|
|
}
|
|
|
|
TEST(SamplesStatsCounter, VarianceFromUniformDistribution) {
|
|
// Check variance converge to 1/12 for [0;1) uniform distribution.
|
|
// Acts as a sanity check for NumericStabilityForVariance test.
|
|
SamplesStatsCounter stats = CreateStatsFromUniformDistribution(1e6, 0, 1);
|
|
|
|
EXPECT_NEAR(stats.GetVariance(), 1. / 12, 1e-3);
|
|
}
|
|
|
|
TEST(SamplesStatsCounter, NumericStabilityForVariance) {
|
|
// Same test as VarianceFromUniformDistribution,
|
|
// except the range is shifted to [1e9;1e9+1).
|
|
// Variance should also converge to 1/12.
|
|
// NB: Although we lose precision for the samples themselves, the fractional
|
|
// part still enjoys 22 bits of mantissa and errors should even out,
|
|
// so that couldn't explain a mismatch.
|
|
SamplesStatsCounter stats =
|
|
CreateStatsFromUniformDistribution(1e6, 1e9, 1e9 + 1);
|
|
|
|
EXPECT_NEAR(stats.GetVariance(), 1. / 12, 1e-3);
|
|
}
|
|
|
|
TEST_P(SamplesStatsCounterTest, AddSamples) {
|
|
int data[SIZE_FOR_MERGE] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
|
|
// Split the data in different partitions.
|
|
// We have 11 distinct tests:
|
|
// * Empty merged with full sequence.
|
|
// * 1 sample merged with 9 last.
|
|
// * 2 samples merged with 8 last.
|
|
// [...]
|
|
// * Full merged with empty sequence.
|
|
// All must lead to the same result.
|
|
SamplesStatsCounter stats0, stats1;
|
|
for (int i = 0; i < GetParam(); ++i) {
|
|
stats0.AddSample(data[i]);
|
|
}
|
|
for (int i = GetParam(); i < SIZE_FOR_MERGE; ++i) {
|
|
stats1.AddSample(data[i]);
|
|
}
|
|
stats0.AddSamples(stats1);
|
|
|
|
EXPECT_EQ(stats0.GetMin(), 0);
|
|
EXPECT_EQ(stats0.GetMax(), 9);
|
|
EXPECT_DOUBLE_EQ(stats0.GetAverage(), 4.5);
|
|
EXPECT_DOUBLE_EQ(stats0.GetVariance(), 8.25);
|
|
EXPECT_DOUBLE_EQ(stats0.GetStandardDeviation(), sqrt(8.25));
|
|
EXPECT_DOUBLE_EQ(stats0.GetPercentile(0.1), 0.9);
|
|
EXPECT_DOUBLE_EQ(stats0.GetPercentile(0.5), 4.5);
|
|
EXPECT_DOUBLE_EQ(stats0.GetPercentile(0.9), 8.1);
|
|
}
|
|
|
|
INSTANTIATE_TEST_SUITE_P(SamplesStatsCounterTests,
|
|
SamplesStatsCounterTest,
|
|
::testing::Range(0, SIZE_FOR_MERGE + 1));
|
|
|
|
} // namespace webrtc
|