mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 13:50:40 +01:00

Bug: None Change-Id: I5388bc018d7ddd285d154436b5fc52a15469a97d Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/319220 Reviewed-by: Erik Språng <sprang@webrtc.org> Reviewed-by: Per Kjellander <perkj@webrtc.org> Commit-Queue: Björn Terelius <terelius@webrtc.org> Cr-Commit-Position: refs/heads/main@{#40710}
339 lines
12 KiB
C++
339 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/congestion_controller/goog_cc/trendline_estimator.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <deque>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#include "absl/strings/match.h"
|
|
#include "absl/types/optional.h"
|
|
#include "api/field_trials_view.h"
|
|
#include "api/network_state_predictor.h"
|
|
#include "modules/remote_bitrate_estimator/test/bwe_test_logging.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/experiments/struct_parameters_parser.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/numerics/safe_minmax.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
// Parameters for linear least squares fit of regression line to noisy data.
|
|
constexpr double kDefaultTrendlineSmoothingCoeff = 0.9;
|
|
constexpr double kDefaultTrendlineThresholdGain = 4.0;
|
|
const char kBweWindowSizeInPacketsExperiment[] =
|
|
"WebRTC-BweWindowSizeInPackets";
|
|
|
|
size_t ReadTrendlineFilterWindowSize(const FieldTrialsView* key_value_config) {
|
|
std::string experiment_string =
|
|
key_value_config->Lookup(kBweWindowSizeInPacketsExperiment);
|
|
size_t window_size;
|
|
int parsed_values =
|
|
sscanf(experiment_string.c_str(), "Enabled-%zu", &window_size);
|
|
if (parsed_values == 1) {
|
|
if (window_size > 1)
|
|
return window_size;
|
|
RTC_LOG(LS_WARNING) << "Window size must be greater than 1.";
|
|
}
|
|
RTC_LOG(LS_WARNING) << "Failed to parse parameters for BweWindowSizeInPackets"
|
|
" experiment from field trial string. Using default.";
|
|
return TrendlineEstimatorSettings::kDefaultTrendlineWindowSize;
|
|
}
|
|
|
|
absl::optional<double> LinearFitSlope(
|
|
const std::deque<TrendlineEstimator::PacketTiming>& packets) {
|
|
RTC_DCHECK(packets.size() >= 2);
|
|
// Compute the "center of mass".
|
|
double sum_x = 0;
|
|
double sum_y = 0;
|
|
for (const auto& packet : packets) {
|
|
sum_x += packet.arrival_time_ms;
|
|
sum_y += packet.smoothed_delay_ms;
|
|
}
|
|
double x_avg = sum_x / packets.size();
|
|
double y_avg = sum_y / packets.size();
|
|
// Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2
|
|
double numerator = 0;
|
|
double denominator = 0;
|
|
for (const auto& packet : packets) {
|
|
double x = packet.arrival_time_ms;
|
|
double y = packet.smoothed_delay_ms;
|
|
numerator += (x - x_avg) * (y - y_avg);
|
|
denominator += (x - x_avg) * (x - x_avg);
|
|
}
|
|
if (denominator == 0)
|
|
return absl::nullopt;
|
|
return numerator / denominator;
|
|
}
|
|
|
|
absl::optional<double> ComputeSlopeCap(
|
|
const std::deque<TrendlineEstimator::PacketTiming>& packets,
|
|
const TrendlineEstimatorSettings& settings) {
|
|
RTC_DCHECK(1 <= settings.beginning_packets &&
|
|
settings.beginning_packets < packets.size());
|
|
RTC_DCHECK(1 <= settings.end_packets &&
|
|
settings.end_packets < packets.size());
|
|
RTC_DCHECK(settings.beginning_packets + settings.end_packets <=
|
|
packets.size());
|
|
TrendlineEstimator::PacketTiming early = packets[0];
|
|
for (size_t i = 1; i < settings.beginning_packets; ++i) {
|
|
if (packets[i].raw_delay_ms < early.raw_delay_ms)
|
|
early = packets[i];
|
|
}
|
|
size_t late_start = packets.size() - settings.end_packets;
|
|
TrendlineEstimator::PacketTiming late = packets[late_start];
|
|
for (size_t i = late_start + 1; i < packets.size(); ++i) {
|
|
if (packets[i].raw_delay_ms < late.raw_delay_ms)
|
|
late = packets[i];
|
|
}
|
|
if (late.arrival_time_ms - early.arrival_time_ms < 1) {
|
|
return absl::nullopt;
|
|
}
|
|
return (late.raw_delay_ms - early.raw_delay_ms) /
|
|
(late.arrival_time_ms - early.arrival_time_ms) +
|
|
settings.cap_uncertainty;
|
|
}
|
|
|
|
constexpr double kMaxAdaptOffsetMs = 15.0;
|
|
constexpr double kOverUsingTimeThreshold = 10;
|
|
constexpr int kMinNumDeltas = 60;
|
|
constexpr int kDeltaCounterMax = 1000;
|
|
|
|
} // namespace
|
|
|
|
constexpr char TrendlineEstimatorSettings::kKey[];
|
|
|
|
TrendlineEstimatorSettings::TrendlineEstimatorSettings(
|
|
const FieldTrialsView* key_value_config) {
|
|
if (absl::StartsWith(
|
|
key_value_config->Lookup(kBweWindowSizeInPacketsExperiment),
|
|
"Enabled")) {
|
|
window_size = ReadTrendlineFilterWindowSize(key_value_config);
|
|
}
|
|
Parser()->Parse(key_value_config->Lookup(TrendlineEstimatorSettings::kKey));
|
|
if (window_size < 10 || 200 < window_size) {
|
|
RTC_LOG(LS_WARNING) << "Window size must be between 10 and 200 packets";
|
|
window_size = kDefaultTrendlineWindowSize;
|
|
}
|
|
if (enable_cap) {
|
|
if (beginning_packets < 1 || end_packets < 1 ||
|
|
beginning_packets > window_size || end_packets > window_size) {
|
|
RTC_LOG(LS_WARNING) << "Size of beginning and end must be between 1 and "
|
|
<< window_size;
|
|
enable_cap = false;
|
|
beginning_packets = end_packets = 0;
|
|
cap_uncertainty = 0.0;
|
|
}
|
|
if (beginning_packets + end_packets > window_size) {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "Size of beginning plus end can't exceed the window size";
|
|
enable_cap = false;
|
|
beginning_packets = end_packets = 0;
|
|
cap_uncertainty = 0.0;
|
|
}
|
|
if (cap_uncertainty < 0.0 || 0.025 < cap_uncertainty) {
|
|
RTC_LOG(LS_WARNING) << "Cap uncertainty must be between 0 and 0.025";
|
|
cap_uncertainty = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<StructParametersParser> TrendlineEstimatorSettings::Parser() {
|
|
return StructParametersParser::Create("sort", &enable_sort, //
|
|
"cap", &enable_cap, //
|
|
"beginning_packets",
|
|
&beginning_packets, //
|
|
"end_packets", &end_packets, //
|
|
"cap_uncertainty", &cap_uncertainty, //
|
|
"window_size", &window_size);
|
|
}
|
|
|
|
TrendlineEstimator::TrendlineEstimator(
|
|
const FieldTrialsView* key_value_config,
|
|
NetworkStatePredictor* network_state_predictor)
|
|
: settings_(key_value_config),
|
|
smoothing_coef_(kDefaultTrendlineSmoothingCoeff),
|
|
threshold_gain_(kDefaultTrendlineThresholdGain),
|
|
num_of_deltas_(0),
|
|
first_arrival_time_ms_(-1),
|
|
accumulated_delay_(0),
|
|
smoothed_delay_(0),
|
|
delay_hist_(),
|
|
k_up_(0.0087),
|
|
k_down_(0.039),
|
|
overusing_time_threshold_(kOverUsingTimeThreshold),
|
|
threshold_(12.5),
|
|
prev_modified_trend_(NAN),
|
|
last_update_ms_(-1),
|
|
prev_trend_(0.0),
|
|
time_over_using_(-1),
|
|
overuse_counter_(0),
|
|
hypothesis_(BandwidthUsage::kBwNormal),
|
|
hypothesis_predicted_(BandwidthUsage::kBwNormal),
|
|
network_state_predictor_(network_state_predictor) {
|
|
RTC_LOG(LS_INFO)
|
|
<< "Using Trendline filter for delay change estimation with settings "
|
|
<< settings_.Parser()->Encode() << " and "
|
|
<< (network_state_predictor_ ? "injected" : "no")
|
|
<< " network state predictor";
|
|
}
|
|
|
|
TrendlineEstimator::~TrendlineEstimator() {}
|
|
|
|
void TrendlineEstimator::UpdateTrendline(double recv_delta_ms,
|
|
double send_delta_ms,
|
|
int64_t send_time_ms,
|
|
int64_t arrival_time_ms,
|
|
size_t packet_size) {
|
|
const double delta_ms = recv_delta_ms - send_delta_ms;
|
|
++num_of_deltas_;
|
|
num_of_deltas_ = std::min(num_of_deltas_, kDeltaCounterMax);
|
|
if (first_arrival_time_ms_ == -1)
|
|
first_arrival_time_ms_ = arrival_time_ms;
|
|
|
|
// Exponential backoff filter.
|
|
accumulated_delay_ += delta_ms;
|
|
BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", arrival_time_ms,
|
|
accumulated_delay_);
|
|
smoothed_delay_ = smoothing_coef_ * smoothed_delay_ +
|
|
(1 - smoothing_coef_) * accumulated_delay_;
|
|
BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", arrival_time_ms,
|
|
smoothed_delay_);
|
|
|
|
// Maintain packet window
|
|
delay_hist_.emplace_back(
|
|
static_cast<double>(arrival_time_ms - first_arrival_time_ms_),
|
|
smoothed_delay_, accumulated_delay_);
|
|
if (settings_.enable_sort) {
|
|
for (size_t i = delay_hist_.size() - 1;
|
|
i > 0 &&
|
|
delay_hist_[i].arrival_time_ms < delay_hist_[i - 1].arrival_time_ms;
|
|
--i) {
|
|
std::swap(delay_hist_[i], delay_hist_[i - 1]);
|
|
}
|
|
}
|
|
if (delay_hist_.size() > settings_.window_size)
|
|
delay_hist_.pop_front();
|
|
|
|
// Simple linear regression.
|
|
double trend = prev_trend_;
|
|
if (delay_hist_.size() == settings_.window_size) {
|
|
// Update trend_ if it is possible to fit a line to the data. The delay
|
|
// trend can be seen as an estimate of (send_rate - capacity)/capacity.
|
|
// 0 < trend < 1 -> the delay increases, queues are filling up
|
|
// trend == 0 -> the delay does not change
|
|
// trend < 0 -> the delay decreases, queues are being emptied
|
|
trend = LinearFitSlope(delay_hist_).value_or(trend);
|
|
if (settings_.enable_cap) {
|
|
absl::optional<double> cap = ComputeSlopeCap(delay_hist_, settings_);
|
|
// We only use the cap to filter out overuse detections, not
|
|
// to detect additional underuses.
|
|
if (trend >= 0 && cap.has_value() && trend > cap.value()) {
|
|
trend = cap.value();
|
|
}
|
|
}
|
|
}
|
|
BWE_TEST_LOGGING_PLOT(1, "trendline_slope", arrival_time_ms, trend);
|
|
|
|
Detect(trend, send_delta_ms, arrival_time_ms);
|
|
}
|
|
|
|
void TrendlineEstimator::Update(double recv_delta_ms,
|
|
double send_delta_ms,
|
|
int64_t send_time_ms,
|
|
int64_t arrival_time_ms,
|
|
size_t packet_size,
|
|
bool calculated_deltas) {
|
|
if (calculated_deltas) {
|
|
UpdateTrendline(recv_delta_ms, send_delta_ms, send_time_ms, arrival_time_ms,
|
|
packet_size);
|
|
}
|
|
if (network_state_predictor_) {
|
|
hypothesis_predicted_ = network_state_predictor_->Update(
|
|
send_time_ms, arrival_time_ms, hypothesis_);
|
|
}
|
|
}
|
|
|
|
BandwidthUsage TrendlineEstimator::State() const {
|
|
return network_state_predictor_ ? hypothesis_predicted_ : hypothesis_;
|
|
}
|
|
|
|
void TrendlineEstimator::Detect(double trend, double ts_delta, int64_t now_ms) {
|
|
if (num_of_deltas_ < 2) {
|
|
hypothesis_ = BandwidthUsage::kBwNormal;
|
|
return;
|
|
}
|
|
const double modified_trend =
|
|
std::min(num_of_deltas_, kMinNumDeltas) * trend * threshold_gain_;
|
|
prev_modified_trend_ = modified_trend;
|
|
BWE_TEST_LOGGING_PLOT(1, "T", now_ms, modified_trend);
|
|
BWE_TEST_LOGGING_PLOT(1, "threshold", now_ms, threshold_);
|
|
if (modified_trend > threshold_) {
|
|
if (time_over_using_ == -1) {
|
|
// Initialize the timer. Assume that we've been
|
|
// over-using half of the time since the previous
|
|
// sample.
|
|
time_over_using_ = ts_delta / 2;
|
|
} else {
|
|
// Increment timer
|
|
time_over_using_ += ts_delta;
|
|
}
|
|
overuse_counter_++;
|
|
if (time_over_using_ > overusing_time_threshold_ && overuse_counter_ > 1) {
|
|
if (trend >= prev_trend_) {
|
|
time_over_using_ = 0;
|
|
overuse_counter_ = 0;
|
|
hypothesis_ = BandwidthUsage::kBwOverusing;
|
|
}
|
|
}
|
|
} else if (modified_trend < -threshold_) {
|
|
time_over_using_ = -1;
|
|
overuse_counter_ = 0;
|
|
hypothesis_ = BandwidthUsage::kBwUnderusing;
|
|
} else {
|
|
time_over_using_ = -1;
|
|
overuse_counter_ = 0;
|
|
hypothesis_ = BandwidthUsage::kBwNormal;
|
|
}
|
|
prev_trend_ = trend;
|
|
UpdateThreshold(modified_trend, now_ms);
|
|
}
|
|
|
|
void TrendlineEstimator::UpdateThreshold(double modified_trend,
|
|
int64_t now_ms) {
|
|
if (last_update_ms_ == -1)
|
|
last_update_ms_ = now_ms;
|
|
|
|
if (fabs(modified_trend) > threshold_ + kMaxAdaptOffsetMs) {
|
|
// Avoid adapting the threshold to big latency spikes, caused e.g.,
|
|
// by a sudden capacity drop.
|
|
last_update_ms_ = now_ms;
|
|
return;
|
|
}
|
|
|
|
const double k = fabs(modified_trend) < threshold_ ? k_down_ : k_up_;
|
|
const int64_t kMaxTimeDeltaMs = 100;
|
|
int64_t time_delta_ms = std::min(now_ms - last_update_ms_, kMaxTimeDeltaMs);
|
|
threshold_ += k * (fabs(modified_trend) - threshold_) * time_delta_ms;
|
|
threshold_ = rtc::SafeClamp(threshold_, 6.f, 600.f);
|
|
last_update_ms_ = now_ms;
|
|
}
|
|
|
|
} // namespace webrtc
|