webrtc/test/fuzzers/neteq_signal_fuzzer.cc
Henrik Lundin b82de30080 Add new neteq_signal_fuzzer
NetEq has been fuzzed by neteq_rtp_fuzzer for some time. That fuzzer
hammers the RTP data, but leaves much of the other data alone. This
new fuzzer instead alters the encoded audio, packet arrival timing,
clock drift, and packet losses.

Bug: webrtc:8421
Change-Id: Ie25b77590a66a7451f32a73c6b5b570944244027
Reviewed-on: https://webrtc-review.googlesource.com/13860
Commit-Queue: Henrik Lundin <henrik.lundin@webrtc.org>
Reviewed-by: Ivo Creusen <ivoc@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#20368}
2017-10-20 09:05:54 +00:00

262 lines
10 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cmath>
#include <limits>
#include <memory>
#include <vector>
#include "api/array_view.h"
#include "modules/audio_coding/codecs/pcm16b/audio_encoder_pcm16b.h"
#include "modules/audio_coding/neteq/tools/audio_checksum.h"
#include "modules/audio_coding/neteq/tools/encode_neteq_input.h"
#include "modules/audio_coding/neteq/tools/neteq_test.h"
#include "modules/rtp_rtcp/source/byte_io.h"
#include "rtc_base/random.h"
#include "rtc_base/safe_conversions.h"
namespace webrtc {
namespace test {
namespace {
// Helper class to take care of the fuzzer input, read from it, and keep track
// of when the end of the data has been reached.
class FuzzData {
public:
explicit FuzzData(rtc::ArrayView<const uint8_t> data) : data_(data) {}
// Returns true if n bytes can be read.
bool CanReadBytes(size_t n) const { return data_ix_ + n <= data_.size(); }
// Reads and returns data of type T.
template <typename T>
T Read() {
RTC_CHECK(CanReadBytes(sizeof(T)));
T x = ByteReader<T>::ReadLittleEndian(&data_[data_ix_]);
data_ix_ += sizeof(T);
return x;
}
// Reads and returns data of type T. Returns default_value if not enough
// fuzzer input remains to read a T.
template <typename T>
T ReadOrDefaultValue(T default_value) {
if (!CanReadBytes(sizeof(T))) {
return default_value;
}
return Read<T>();
}
// Like ReadOrDefaultValue, but replaces the value 0 with default_value.
template <typename T>
T ReadOrDefaultValueNotZero(T default_value) {
static_assert(std::is_integral<T>::value, "");
T x = ReadOrDefaultValue(default_value);
return x == 0 ? default_value : x;
}
// Returns one of the elements from the provided input array. The selection
// is based on the fuzzer input data. If not enough fuzzer data is available,
// the method will return the first element in the input array. The reason for
// not flaggin this as an error is that the method is called from the
// FuzzSignalInput constructor, and in constructors we typically do not handle
// errors. The code will work anyway, and the fuzzer will likely see that
// providing more data will actually make this method return something else.
template <typename T>
T SelectOneOf(rtc::ArrayView<const T> select_from) {
RTC_CHECK_LE(select_from.size(), std::numeric_limits<uint8_t>::max());
// Read an index between 0 and select_from.size() - 1 from the fuzzer data.
uint8_t index = ReadOrDefaultValue<uint8_t>(0) % select_from.size();
return select_from[index];
}
private:
rtc::ArrayView<const uint8_t> data_;
size_t data_ix_ = 0;
};
// Generate a mixture of sine wave and gaussian noise.
class SineAndNoiseGenerator : public EncodeNetEqInput::Generator {
public:
// The noise generator is seeded with a value from the fuzzer data, but 0 is
// avoided (since it is not allowed by the Random class).
SineAndNoiseGenerator(int sample_rate_hz, FuzzData* fuzz_data)
: sample_rate_hz_(sample_rate_hz),
fuzz_data_(*fuzz_data),
noise_generator_(fuzz_data_.ReadOrDefaultValueNotZero<uint64_t>(1)) {}
// Generates num_samples of the sine-gaussian mixture.
rtc::ArrayView<const int16_t> Generate(size_t num_samples) override {
if (samples_.size() < num_samples) {
samples_.resize(num_samples);
}
rtc::ArrayView<int16_t> output(samples_.data(), num_samples);
// Randomize an amplitude between 0 and 32768; use 65000/2 if we are out of
// fuzzer data.
const float amplitude = fuzz_data_.ReadOrDefaultValue<uint16_t>(65000) / 2;
// Randomize a noise standard deviation between 0 and 1999.
const float noise_std = fuzz_data_.ReadOrDefaultValue<uint16_t>(0) % 2000;
for (auto& x : output) {
x = rtc::saturated_cast<int16_t>(amplitude * std::sin(phase_) +
noise_generator_.Gaussian(0, noise_std));
phase_ += 2 * kPi * kFreqHz / sample_rate_hz_;
}
return output;
}
private:
static constexpr int kFreqHz = 300; // The sinewave frequency.
const int sample_rate_hz_;
const double kPi = std::acos(-1);
std::vector<int16_t> samples_;
double phase_ = 0.0;
FuzzData& fuzz_data_;
Random noise_generator_;
};
class FuzzSignalInput : public NetEqInput {
public:
explicit FuzzSignalInput(FuzzData* fuzz_data,
int sample_rate,
uint8_t payload_type)
: fuzz_data_(*fuzz_data) {
AudioEncoderPcm16B::Config config;
config.payload_type = payload_type;
config.sample_rate_hz = sample_rate;
std::unique_ptr<AudioEncoder> encoder(new AudioEncoderPcm16B(config));
std::unique_ptr<EncodeNetEqInput::Generator> generator(
new SineAndNoiseGenerator(config.sample_rate_hz, fuzz_data));
input_.reset(new EncodeNetEqInput(std::move(generator), std::move(encoder),
std::numeric_limits<int64_t>::max()));
packet_ = input_->PopPacket();
// Select an output event period. This is how long time we wait between each
// call to NetEq::GetAudio. 10 ms is nominal, 9 and 11 ms will both lead to
// clock drift (in different directions).
constexpr int output_event_periods[] = {9, 10, 11};
output_event_period_ms_ =
fuzz_data_.SelectOneOf(rtc::ArrayView<const int>(output_event_periods));
}
rtc::Optional<int64_t> NextPacketTime() const override {
return rtc::Optional<int64_t>(packet_->time_ms);
}
rtc::Optional<int64_t> NextOutputEventTime() const override {
return rtc::Optional<int64_t>(next_output_event_ms_);
}
std::unique_ptr<PacketData> PopPacket() override {
RTC_DCHECK(packet_);
std::unique_ptr<PacketData> packet_to_return = std::move(packet_);
do {
packet_ = input_->PopPacket();
// If the next value from the fuzzer input is 0, the packet is discarded
// and the next one is pulled from the source.
} while (fuzz_data_.CanReadBytes(1) && fuzz_data_.Read<uint8_t>() == 0);
if (fuzz_data_.CanReadBytes(1)) {
// Generate jitter by setting an offset for the arrival time.
const int8_t arrival_time_offset_ms = fuzz_data_.Read<int8_t>();
// The arrival time can not be before the previous packets.
packet_->time_ms = std::max(packet_to_return->time_ms,
packet_->time_ms + arrival_time_offset_ms);
} else {
// Mark that we are at the end of the test. However, the current packet is
// still valid (but it may not have been fuzzed as expected).
ended_ = true;
}
return packet_to_return;
}
void AdvanceOutputEvent() override {
next_output_event_ms_ += output_event_period_ms_;
}
bool ended() const override { return ended_; }
rtc::Optional<RTPHeader> NextHeader() const override {
RTC_DCHECK(packet_);
return rtc::Optional<RTPHeader>(packet_->header);
}
private:
bool ended_ = false;
FuzzData& fuzz_data_;
std::unique_ptr<EncodeNetEqInput> input_;
std::unique_ptr<PacketData> packet_;
int64_t next_output_event_ms_ = 0;
int64_t output_event_period_ms_ = 10;
};
} // namespace
void FuzzOneInputTest(const uint8_t* data, size_t size) {
if (size < 1)
return;
FuzzData fuzz_data(rtc::ArrayView<const uint8_t>(data, size));
// Allowed sample rates and payload types used in the test.
std::pair<int, uint8_t> rate_types[] = {
{8000, 93}, {16000, 94}, {32000, 95}, {48000, 96}};
const auto rate_type = fuzz_data.SelectOneOf(
rtc::ArrayView<const std::pair<int, uint8_t>>(rate_types));
const int sample_rate = rate_type.first;
const uint8_t payload_type = rate_type.second;
// Set up the input signal generator.
std::unique_ptr<FuzzSignalInput> input(
new FuzzSignalInput(&fuzz_data, sample_rate, payload_type));
// Output sink for the test.
std::unique_ptr<AudioChecksum> output(new AudioChecksum);
// Configure NetEq and the NetEqTest object.
NetEqTest::Callbacks callbacks;
NetEq::Config config;
config.enable_post_decode_vad = true;
config.enable_fast_accelerate = true;
NetEqTest::DecoderMap codecs;
codecs[0] = std::make_pair(NetEqDecoder::kDecoderPCMu, "pcmu");
codecs[8] = std::make_pair(NetEqDecoder::kDecoderPCMa, "pcma");
codecs[103] = std::make_pair(NetEqDecoder::kDecoderISAC, "isac");
codecs[104] = std::make_pair(NetEqDecoder::kDecoderISACswb, "isac-swb");
codecs[111] = std::make_pair(NetEqDecoder::kDecoderOpus, "opus");
codecs[9] = std::make_pair(NetEqDecoder::kDecoderG722, "g722");
codecs[106] = std::make_pair(NetEqDecoder::kDecoderAVT, "avt");
codecs[114] = std::make_pair(NetEqDecoder::kDecoderAVT16kHz, "avt-16");
codecs[115] = std::make_pair(NetEqDecoder::kDecoderAVT32kHz, "avt-32");
codecs[116] = std::make_pair(NetEqDecoder::kDecoderAVT48kHz, "avt-48");
codecs[117] = std::make_pair(NetEqDecoder::kDecoderRED, "red");
codecs[13] = std::make_pair(NetEqDecoder::kDecoderCNGnb, "cng-nb");
codecs[98] = std::make_pair(NetEqDecoder::kDecoderCNGwb, "cng-wb");
codecs[99] = std::make_pair(NetEqDecoder::kDecoderCNGswb32kHz, "cng-swb32");
codecs[100] = std::make_pair(NetEqDecoder::kDecoderCNGswb48kHz, "cng-swb48");
// One of these payload types will be used for encoding.
codecs[rate_types[0].second] =
std::make_pair(NetEqDecoder::kDecoderPCM16B, "pcm16-nb");
codecs[rate_types[1].second] =
std::make_pair(NetEqDecoder::kDecoderPCM16Bwb, "pcm16-wb");
codecs[rate_types[2].second] =
std::make_pair(NetEqDecoder::kDecoderPCM16Bswb32kHz, "pcm16-swb32");
codecs[rate_types[3].second] =
std::make_pair(NetEqDecoder::kDecoderPCM16Bswb48kHz, "pcm16-swb48");
NetEqTest::ExtDecoderMap ext_codecs;
NetEqTest test(config, codecs, ext_codecs, std::move(input),
std::move(output), callbacks);
test.Run();
}
} // namespace test
void FuzzOneInput(const uint8_t* data, size_t size) {
test::FuzzOneInputTest(data, size);
}
} // namespace webrtc