webrtc/api/units/timestamp_unittest.cc
Sebastian Jansson 88c1a9ecbc Adds infinite addition and subtraction to time units.
This prepares for allowing use making arithmetic operators constexpr.

This also makes it easier to use for comparisons with offsets.
Now a > b + 10 ms works even if b is infinite.

Bug: webrtc:9574
Change-Id: Ie36092b72c2ec0f0c541641199a39155f5a796f3
Reviewed-on: https://webrtc-review.googlesource.com/96820
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Commit-Queue: Sebastian Jansson <srte@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24530}
2018-09-03 09:12:10 +00:00

144 lines
5.4 KiB
C++

/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/units/timestamp.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
TEST(TimestampTest, ConstExpr) {
constexpr int64_t kValue = 12345;
constexpr Timestamp kTimestampInf = Timestamp::Infinity();
static_assert(kTimestampInf.IsInfinite(), "");
static_assert(kTimestampInf.ms_or(-1) == -1, "");
constexpr Timestamp kTimestampSeconds = Timestamp::Seconds<kValue>();
constexpr Timestamp kTimestampMs = Timestamp::Millis<kValue>();
constexpr Timestamp kTimestampUs = Timestamp::Micros<kValue>();
static_assert(kTimestampSeconds.seconds_or(0) == kValue, "");
static_assert(kTimestampMs.ms_or(0) == kValue, "");
static_assert(kTimestampUs.us_or(0) == kValue, "");
static_assert(kTimestampMs > kTimestampUs, "");
EXPECT_EQ(kTimestampSeconds.seconds(), kValue);
EXPECT_EQ(kTimestampMs.ms(), kValue);
EXPECT_EQ(kTimestampUs.us(), kValue);
}
TEST(TimestampTest, GetBackSameValues) {
const int64_t kValue = 499;
EXPECT_EQ(Timestamp::ms(kValue).ms(), kValue);
EXPECT_EQ(Timestamp::us(kValue).us(), kValue);
EXPECT_EQ(Timestamp::seconds(kValue).seconds(), kValue);
}
TEST(TimestampTest, GetDifferentPrefix) {
const int64_t kValue = 3000000;
EXPECT_EQ(Timestamp::us(kValue).seconds(), kValue / 1000000);
EXPECT_EQ(Timestamp::ms(kValue).seconds(), kValue / 1000);
EXPECT_EQ(Timestamp::us(kValue).ms(), kValue / 1000);
EXPECT_EQ(Timestamp::ms(kValue).us(), kValue * 1000);
EXPECT_EQ(Timestamp::seconds(kValue).ms(), kValue * 1000);
EXPECT_EQ(Timestamp::seconds(kValue).us(), kValue * 1000000);
}
TEST(TimestampTest, IdentityChecks) {
const int64_t kValue = 3000;
EXPECT_TRUE(Timestamp::Infinity().IsInfinite());
EXPECT_FALSE(Timestamp::ms(kValue).IsInfinite());
EXPECT_FALSE(Timestamp::Infinity().IsFinite());
EXPECT_TRUE(Timestamp::ms(kValue).IsFinite());
}
TEST(TimestampTest, ComparisonOperators) {
const int64_t kSmall = 450;
const int64_t kLarge = 451;
EXPECT_EQ(Timestamp::Infinity(), Timestamp::Infinity());
EXPECT_GE(Timestamp::Infinity(), Timestamp::Infinity());
EXPECT_GT(Timestamp::Infinity(), Timestamp::ms(kLarge));
EXPECT_EQ(Timestamp::ms(kSmall), Timestamp::ms(kSmall));
EXPECT_LE(Timestamp::ms(kSmall), Timestamp::ms(kSmall));
EXPECT_GE(Timestamp::ms(kSmall), Timestamp::ms(kSmall));
EXPECT_NE(Timestamp::ms(kSmall), Timestamp::ms(kLarge));
EXPECT_LE(Timestamp::ms(kSmall), Timestamp::ms(kLarge));
EXPECT_LT(Timestamp::ms(kSmall), Timestamp::ms(kLarge));
EXPECT_GE(Timestamp::ms(kLarge), Timestamp::ms(kSmall));
EXPECT_GT(Timestamp::ms(kLarge), Timestamp::ms(kSmall));
}
TEST(TimestampTest, CanBeInititializedFromLargeInt) {
const int kMaxInt = std::numeric_limits<int>::max();
EXPECT_EQ(Timestamp::seconds(kMaxInt).us(),
static_cast<int64_t>(kMaxInt) * 1000000);
EXPECT_EQ(Timestamp::ms(kMaxInt).us(), static_cast<int64_t>(kMaxInt) * 1000);
}
TEST(TimestampTest, ConvertsToAndFromDouble) {
const int64_t kMicros = 17017;
const double kMicrosDouble = kMicros;
const double kMillisDouble = kMicros * 1e-3;
const double kSecondsDouble = kMillisDouble * 1e-3;
EXPECT_EQ(Timestamp::us(kMicros).seconds<double>(), kSecondsDouble);
EXPECT_EQ(Timestamp::seconds(kSecondsDouble).us(), kMicros);
EXPECT_EQ(Timestamp::us(kMicros).ms<double>(), kMillisDouble);
EXPECT_EQ(Timestamp::ms(kMillisDouble).us(), kMicros);
EXPECT_EQ(Timestamp::us(kMicros).us<double>(), kMicrosDouble);
EXPECT_EQ(Timestamp::us(kMicrosDouble).us(), kMicros);
const double kPlusInfinity = std::numeric_limits<double>::infinity();
EXPECT_EQ(Timestamp::Infinity().seconds<double>(), kPlusInfinity);
EXPECT_EQ(Timestamp::Infinity().ms<double>(), kPlusInfinity);
EXPECT_EQ(Timestamp::Infinity().us<double>(), kPlusInfinity);
EXPECT_TRUE(Timestamp::seconds(kPlusInfinity).IsInfinite());
EXPECT_TRUE(Timestamp::ms(kPlusInfinity).IsInfinite());
EXPECT_TRUE(Timestamp::us(kPlusInfinity).IsInfinite());
}
TEST(UnitConversionTest, TimestampAndTimeDeltaMath) {
const int64_t kValueA = 267;
const int64_t kValueB = 450;
const Timestamp time_a = Timestamp::ms(kValueA);
const Timestamp time_b = Timestamp::ms(kValueB);
const TimeDelta delta_a = TimeDelta::ms(kValueA);
const TimeDelta delta_b = TimeDelta::ms(kValueB);
EXPECT_EQ((time_a - time_b), TimeDelta::ms(kValueA - kValueB));
EXPECT_EQ((time_b - delta_a), Timestamp::ms(kValueB - kValueA));
EXPECT_EQ((time_b + delta_a), Timestamp::ms(kValueB + kValueA));
Timestamp mutable_time = time_a;
mutable_time += delta_b;
EXPECT_EQ(mutable_time, time_a + delta_b);
mutable_time -= delta_b;
EXPECT_EQ(mutable_time, time_a);
}
TEST(UnitConversionTest, InfinityOperations) {
const int64_t kValue = 267;
const Timestamp finite_time = Timestamp::ms(kValue);
const TimeDelta finite_delta = TimeDelta::ms(kValue);
EXPECT_TRUE((Timestamp::Infinity() + finite_delta).IsInfinite());
EXPECT_TRUE((Timestamp::Infinity() - finite_delta).IsInfinite());
EXPECT_TRUE((finite_time + TimeDelta::PlusInfinity()).IsInfinite());
EXPECT_TRUE((finite_time - TimeDelta::MinusInfinity()).IsInfinite());
}
} // namespace test
} // namespace webrtc