webrtc/rtc_base/numerics/math_utils.h
Yves Gerey 890f62b8fe Provide robust and efficient variance computation for online statistics.
This CL implements Welford's algorithm for a
numerically stable computation of the variance.
This implementation is plugged in SamplesStatsCounter class (adapter pattern).

A 'NumericalStability' unit test has been added,
whose previous implementation of SamplesStatsCounter failed to pass.

Follow-up CLs will factorize more occurences of duplicated and misbehaved
computations.

Bug: webrtc:10412
Change-Id: Id807c3d34e9c780fb1cbd769d30b655c575c88ac
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/131394
Commit-Queue: Yves Gerey <yvesg@google.com>
Reviewed-by: Artem Titov <titovartem@webrtc.org>
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#27547}
2019-04-10 16:27:57 +00:00

74 lines
2.6 KiB
C++

/*
* Copyright 2005 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef RTC_BASE_NUMERICS_MATH_UTILS_H_
#define RTC_BASE_NUMERICS_MATH_UTILS_H_
#include <math.h>
#include <type_traits>
#include "rtc_base/checks.h"
#ifndef M_PI
#define M_PI 3.14159265359f
#endif
// Given two numbers |x| and |y| such that x >= y, computes the difference
// x - y without causing undefined behavior due to signed overflow.
template <typename T>
typename std::make_unsigned<T>::type unsigned_difference(T x, T y) {
static_assert(
std::is_signed<T>::value,
"Function unsigned_difference is only meaningful for signed types.");
RTC_DCHECK_GE(x, y);
typedef typename std::make_unsigned<T>::type unsigned_type;
// int -> unsigned conversion repeatedly adds UINT_MAX + 1 until the number
// can be represented as an unsigned. Since we know that the actual
// difference x - y can be represented as an unsigned, it is sufficient to
// compute the difference modulo UINT_MAX + 1, i.e using unsigned arithmetic.
return static_cast<unsigned_type>(x) - static_cast<unsigned_type>(y);
}
// Provide neutral element with respect to min().
// Typically used as an initial value for running minimum.
template <typename T,
typename std::enable_if<std::numeric_limits<T>::has_infinity>::type* =
nullptr>
constexpr T infinity_or_max() {
return std::numeric_limits<T>::infinity();
}
template <typename T,
typename std::enable_if<
!std::numeric_limits<T>::has_infinity>::type* = nullptr>
constexpr T infinity_or_max() {
// Fallback to max().
return std::numeric_limits<T>::max();
}
// Provide neutral element with respect to max().
// Typically used as an initial value for running maximum.
template <typename T,
typename std::enable_if<std::numeric_limits<T>::has_infinity>::type* =
nullptr>
constexpr T minus_infinity_or_min() {
static_assert(std::is_signed<T>::value, "Unsupported. Please open a bug.");
return -std::numeric_limits<T>::infinity();
}
template <typename T,
typename std::enable_if<
!std::numeric_limits<T>::has_infinity>::type* = nullptr>
constexpr T minus_infinity_or_min() {
// Fallback to min().
return std::numeric_limits<T>::min();
}
#endif // RTC_BASE_NUMERICS_MATH_UTILS_H_