webrtc/modules/audio_coding/neteq/neteq_impl_unittest.cc
Jakob Ivarsson e98954c35e Prevent updating state in the delay manager if the packet was reordered.
Currently, if the last packet was reordered (e.g. due to retransmission) then the next packet's inter-arrival time will be estimated incorrectly due to the jump in sequence numbers. This change prevents that by not resetting the stopwatch on reordered packets.

This will also better estimate inter-arrival times when we have multiple reordered packets in a burst. Currently we would only measure the iat of the first reordered packet correctly and not the ones coming after it.

There is a slight risk introducing this: If we would receive an out of order packet far into the future (in sequence numbers) and then continue getting packets in the normal order, then we would not update the current sequence number for these and incorrectly estimate their inter-arrival times since they would all be considered reordered.

Change-Id: Ic938a37cbddf1cb9c30b610218f56794568d3d01
Bug: webrtc:10178
Reviewed-on: https://webrtc-review.googlesource.com/c/119949
Reviewed-by: Minyue Li <minyue@webrtc.org>
Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org>
Commit-Queue: Jakob Ivarsson‎ <jakobi@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#26572}
2019-02-06 15:30:54 +00:00

1565 lines
59 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include "absl/memory/memory.h"
#include "api/audio_codecs/builtin_audio_decoder_factory.h"
#include "modules/audio_coding/neteq/accelerate.h"
#include "modules/audio_coding/neteq/expand.h"
#include "modules/audio_coding/neteq/include/neteq.h"
#include "modules/audio_coding/neteq/mock/mock_buffer_level_filter.h"
#include "modules/audio_coding/neteq/mock/mock_decoder_database.h"
#include "modules/audio_coding/neteq/mock/mock_delay_manager.h"
#include "modules/audio_coding/neteq/mock/mock_delay_peak_detector.h"
#include "modules/audio_coding/neteq/mock/mock_dtmf_buffer.h"
#include "modules/audio_coding/neteq/mock/mock_dtmf_tone_generator.h"
#include "modules/audio_coding/neteq/mock/mock_packet_buffer.h"
#include "modules/audio_coding/neteq/mock/mock_red_payload_splitter.h"
#include "modules/audio_coding/neteq/neteq_impl.h"
#include "modules/audio_coding/neteq/preemptive_expand.h"
#include "modules/audio_coding/neteq/sync_buffer.h"
#include "modules/audio_coding/neteq/timestamp_scaler.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "test/audio_decoder_proxy_factory.h"
#include "test/function_audio_decoder_factory.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/mock_audio_decoder.h"
#include "test/mock_audio_decoder_factory.h"
using ::testing::AtLeast;
using ::testing::Return;
using ::testing::ReturnNull;
using ::testing::_;
using ::testing::SetArgPointee;
using ::testing::SetArrayArgument;
using ::testing::InSequence;
using ::testing::Invoke;
using ::testing::WithArg;
using ::testing::Pointee;
using ::testing::IsNull;
namespace webrtc {
// This function is called when inserting a packet list into the mock packet
// buffer. The purpose is to delete all inserted packets properly, to avoid
// memory leaks in the test.
int DeletePacketsAndReturnOk(PacketList* packet_list) {
packet_list->clear();
return PacketBuffer::kOK;
}
class NetEqImplTest : public ::testing::Test {
protected:
NetEqImplTest() { config_.sample_rate_hz = 8000; }
void CreateInstance(
const rtc::scoped_refptr<AudioDecoderFactory>& decoder_factory) {
ASSERT_TRUE(decoder_factory);
NetEqImpl::Dependencies deps(config_, decoder_factory);
// Get a local pointer to NetEq's TickTimer object.
tick_timer_ = deps.tick_timer.get();
if (use_mock_buffer_level_filter_) {
std::unique_ptr<MockBufferLevelFilter> mock(new MockBufferLevelFilter);
mock_buffer_level_filter_ = mock.get();
deps.buffer_level_filter = std::move(mock);
}
buffer_level_filter_ = deps.buffer_level_filter.get();
if (use_mock_decoder_database_) {
std::unique_ptr<MockDecoderDatabase> mock(new MockDecoderDatabase);
mock_decoder_database_ = mock.get();
EXPECT_CALL(*mock_decoder_database_, GetActiveCngDecoder())
.WillOnce(ReturnNull());
deps.decoder_database = std::move(mock);
}
decoder_database_ = deps.decoder_database.get();
if (use_mock_delay_peak_detector_) {
std::unique_ptr<MockDelayPeakDetector> mock(
new MockDelayPeakDetector(tick_timer_, config_.enable_rtx_handling));
mock_delay_peak_detector_ = mock.get();
EXPECT_CALL(*mock_delay_peak_detector_, Reset()).Times(1);
deps.delay_peak_detector = std::move(mock);
}
delay_peak_detector_ = deps.delay_peak_detector.get();
if (use_mock_delay_manager_) {
std::unique_ptr<MockDelayManager> mock(new MockDelayManager(
config_.max_packets_in_buffer, config_.min_delay_ms,
config_.enable_rtx_handling, delay_peak_detector_, tick_timer_));
mock_delay_manager_ = mock.get();
EXPECT_CALL(*mock_delay_manager_, set_streaming_mode(false)).Times(1);
deps.delay_manager = std::move(mock);
}
delay_manager_ = deps.delay_manager.get();
if (use_mock_dtmf_buffer_) {
std::unique_ptr<MockDtmfBuffer> mock(
new MockDtmfBuffer(config_.sample_rate_hz));
mock_dtmf_buffer_ = mock.get();
deps.dtmf_buffer = std::move(mock);
}
dtmf_buffer_ = deps.dtmf_buffer.get();
if (use_mock_dtmf_tone_generator_) {
std::unique_ptr<MockDtmfToneGenerator> mock(new MockDtmfToneGenerator);
mock_dtmf_tone_generator_ = mock.get();
deps.dtmf_tone_generator = std::move(mock);
}
dtmf_tone_generator_ = deps.dtmf_tone_generator.get();
if (use_mock_packet_buffer_) {
std::unique_ptr<MockPacketBuffer> mock(
new MockPacketBuffer(config_.max_packets_in_buffer, tick_timer_));
mock_packet_buffer_ = mock.get();
deps.packet_buffer = std::move(mock);
}
packet_buffer_ = deps.packet_buffer.get();
if (use_mock_payload_splitter_) {
std::unique_ptr<MockRedPayloadSplitter> mock(new MockRedPayloadSplitter);
mock_payload_splitter_ = mock.get();
deps.red_payload_splitter = std::move(mock);
}
red_payload_splitter_ = deps.red_payload_splitter.get();
deps.timestamp_scaler = std::unique_ptr<TimestampScaler>(
new TimestampScaler(*deps.decoder_database.get()));
neteq_.reset(new NetEqImpl(config_, std::move(deps)));
ASSERT_TRUE(neteq_ != NULL);
}
void CreateInstance() { CreateInstance(CreateBuiltinAudioDecoderFactory()); }
void UseNoMocks() {
ASSERT_TRUE(neteq_ == NULL) << "Must call UseNoMocks before CreateInstance";
use_mock_buffer_level_filter_ = false;
use_mock_decoder_database_ = false;
use_mock_delay_peak_detector_ = false;
use_mock_delay_manager_ = false;
use_mock_dtmf_buffer_ = false;
use_mock_dtmf_tone_generator_ = false;
use_mock_packet_buffer_ = false;
use_mock_payload_splitter_ = false;
}
virtual ~NetEqImplTest() {
if (use_mock_buffer_level_filter_) {
EXPECT_CALL(*mock_buffer_level_filter_, Die()).Times(1);
}
if (use_mock_decoder_database_) {
EXPECT_CALL(*mock_decoder_database_, Die()).Times(1);
}
if (use_mock_delay_manager_) {
EXPECT_CALL(*mock_delay_manager_, Die()).Times(1);
}
if (use_mock_delay_peak_detector_) {
EXPECT_CALL(*mock_delay_peak_detector_, Die()).Times(1);
}
if (use_mock_dtmf_buffer_) {
EXPECT_CALL(*mock_dtmf_buffer_, Die()).Times(1);
}
if (use_mock_dtmf_tone_generator_) {
EXPECT_CALL(*mock_dtmf_tone_generator_, Die()).Times(1);
}
if (use_mock_packet_buffer_) {
EXPECT_CALL(*mock_packet_buffer_, Die()).Times(1);
}
}
void TestDtmfPacket(int sample_rate_hz) {
const size_t kPayloadLength = 4;
const uint8_t kPayloadType = 110;
const uint32_t kReceiveTime = 17;
const int kSampleRateHz = 16000;
config_.sample_rate_hz = kSampleRateHz;
UseNoMocks();
CreateInstance();
// Event: 2, E bit, Volume: 17, Length: 4336.
uint8_t payload[kPayloadLength] = { 0x02, 0x80 + 0x11, 0x10, 0xF0 };
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = 0x1234;
rtp_header.timestamp = 0x12345678;
rtp_header.ssrc = 0x87654321;
EXPECT_TRUE(neteq_->RegisterPayloadType(
kPayloadType, SdpAudioFormat("telephone-event", sample_rate_hz, 1)));
// Insert first packet.
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
// Pull audio once.
const size_t kMaxOutputSize =
static_cast<size_t>(10 * kSampleRateHz / 1000);
AudioFrame output;
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
ASSERT_FALSE(muted);
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
// Verify first 64 samples of actual output.
const std::vector<int16_t> kOutput({
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1578, -2816, -3460, -3403, -2709, -1594,
-363, 671, 1269, 1328, 908, 202, -513, -964, -955, -431, 504, 1617,
2602, 3164, 3101, 2364, 1073, -511, -2047, -3198, -3721, -3525, -2688,
-1440, -99, 1015, 1663, 1744, 1319, 588, -171, -680, -747, -315, 515,
1512, 2378, 2828, 2674, 1877, 568, -986, -2446, -3482, -3864, -3516,
-2534, -1163 });
ASSERT_GE(kMaxOutputSize, kOutput.size());
EXPECT_TRUE(std::equal(kOutput.begin(), kOutput.end(), output.data()));
}
std::unique_ptr<NetEqImpl> neteq_;
NetEq::Config config_;
TickTimer* tick_timer_ = nullptr;
MockBufferLevelFilter* mock_buffer_level_filter_ = nullptr;
BufferLevelFilter* buffer_level_filter_ = nullptr;
bool use_mock_buffer_level_filter_ = true;
MockDecoderDatabase* mock_decoder_database_ = nullptr;
DecoderDatabase* decoder_database_ = nullptr;
bool use_mock_decoder_database_ = true;
MockDelayPeakDetector* mock_delay_peak_detector_ = nullptr;
DelayPeakDetector* delay_peak_detector_ = nullptr;
bool use_mock_delay_peak_detector_ = true;
MockDelayManager* mock_delay_manager_ = nullptr;
DelayManager* delay_manager_ = nullptr;
bool use_mock_delay_manager_ = true;
MockDtmfBuffer* mock_dtmf_buffer_ = nullptr;
DtmfBuffer* dtmf_buffer_ = nullptr;
bool use_mock_dtmf_buffer_ = true;
MockDtmfToneGenerator* mock_dtmf_tone_generator_ = nullptr;
DtmfToneGenerator* dtmf_tone_generator_ = nullptr;
bool use_mock_dtmf_tone_generator_ = true;
MockPacketBuffer* mock_packet_buffer_ = nullptr;
PacketBuffer* packet_buffer_ = nullptr;
bool use_mock_packet_buffer_ = true;
MockRedPayloadSplitter* mock_payload_splitter_ = nullptr;
RedPayloadSplitter* red_payload_splitter_ = nullptr;
bool use_mock_payload_splitter_ = true;
};
// This tests the interface class NetEq.
// TODO(hlundin): Move to separate file?
TEST(NetEq, CreateAndDestroy) {
NetEq::Config config;
NetEq* neteq = NetEq::Create(config, CreateBuiltinAudioDecoderFactory());
delete neteq;
}
TEST_F(NetEqImplTest, RegisterPayloadType) {
CreateInstance();
constexpr int rtp_payload_type = 0;
const SdpAudioFormat format("pcmu", 8000, 1);
EXPECT_CALL(*mock_decoder_database_,
RegisterPayload(rtp_payload_type, format));
neteq_->RegisterPayloadType(rtp_payload_type, format);
}
TEST_F(NetEqImplTest, RemovePayloadType) {
CreateInstance();
uint8_t rtp_payload_type = 0;
EXPECT_CALL(*mock_decoder_database_, Remove(rtp_payload_type))
.WillOnce(Return(DecoderDatabase::kDecoderNotFound));
// Check that kOK is returned when database returns kDecoderNotFound, because
// removing a payload type that was never registered is not an error.
EXPECT_EQ(NetEq::kOK, neteq_->RemovePayloadType(rtp_payload_type));
}
TEST_F(NetEqImplTest, RemoveAllPayloadTypes) {
CreateInstance();
EXPECT_CALL(*mock_decoder_database_, RemoveAll()).WillOnce(Return());
neteq_->RemoveAllPayloadTypes();
}
TEST_F(NetEqImplTest, InsertPacket) {
CreateInstance();
const size_t kPayloadLength = 100;
const uint8_t kPayloadType = 0;
const uint16_t kFirstSequenceNumber = 0x1234;
const uint32_t kFirstTimestamp = 0x12345678;
const uint32_t kSsrc = 0x87654321;
const uint32_t kFirstReceiveTime = 17;
uint8_t payload[kPayloadLength] = {0};
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = kFirstSequenceNumber;
rtp_header.timestamp = kFirstTimestamp;
rtp_header.ssrc = kSsrc;
Packet fake_packet;
fake_packet.payload_type = kPayloadType;
fake_packet.sequence_number = kFirstSequenceNumber;
fake_packet.timestamp = kFirstTimestamp;
rtc::scoped_refptr<MockAudioDecoderFactory> mock_decoder_factory(
new rtc::RefCountedObject<MockAudioDecoderFactory>);
EXPECT_CALL(*mock_decoder_factory, MakeAudioDecoderMock(_, _, _))
.WillOnce(Invoke([&](const SdpAudioFormat& format,
absl::optional<AudioCodecPairId> codec_pair_id,
std::unique_ptr<AudioDecoder>* dec) {
EXPECT_EQ("pcmu", format.name);
std::unique_ptr<MockAudioDecoder> mock_decoder(new MockAudioDecoder);
EXPECT_CALL(*mock_decoder, Channels()).WillRepeatedly(Return(1));
EXPECT_CALL(*mock_decoder, SampleRateHz()).WillRepeatedly(Return(8000));
// BWE update function called with first packet.
EXPECT_CALL(*mock_decoder,
IncomingPacket(_, kPayloadLength, kFirstSequenceNumber,
kFirstTimestamp, kFirstReceiveTime));
// BWE update function called with second packet.
EXPECT_CALL(
*mock_decoder,
IncomingPacket(_, kPayloadLength, kFirstSequenceNumber + 1,
kFirstTimestamp + 160, kFirstReceiveTime + 155));
EXPECT_CALL(*mock_decoder, Die()).Times(1); // Called when deleted.
*dec = std::move(mock_decoder);
}));
DecoderDatabase::DecoderInfo info(SdpAudioFormat("pcmu", 8000, 1),
absl::nullopt, mock_decoder_factory);
// Expectations for decoder database.
EXPECT_CALL(*mock_decoder_database_, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(&info));
// Expectations for packet buffer.
EXPECT_CALL(*mock_packet_buffer_, Empty())
.WillOnce(Return(false)); // Called once after first packet is inserted.
EXPECT_CALL(*mock_packet_buffer_, Flush())
.Times(1);
EXPECT_CALL(*mock_packet_buffer_, InsertPacketList(_, _, _, _, _))
.Times(2)
.WillRepeatedly(DoAll(SetArgPointee<2>(kPayloadType),
WithArg<0>(Invoke(DeletePacketsAndReturnOk))));
// SetArgPointee<2>(kPayloadType) means that the third argument (zero-based
// index) is a pointer, and the variable pointed to is set to kPayloadType.
// Also invoke the function DeletePacketsAndReturnOk to properly delete all
// packets in the list (to avoid memory leaks in the test).
EXPECT_CALL(*mock_packet_buffer_, PeekNextPacket())
.Times(1)
.WillOnce(Return(&fake_packet));
// Expectations for DTMF buffer.
EXPECT_CALL(*mock_dtmf_buffer_, Flush())
.Times(1);
// Expectations for delay manager.
{
// All expectations within this block must be called in this specific order.
InSequence sequence; // Dummy variable.
// Expectations when the first packet is inserted.
EXPECT_CALL(*mock_delay_manager_, last_pack_cng_or_dtmf())
.Times(2)
.WillRepeatedly(Return(-1));
EXPECT_CALL(*mock_delay_manager_, set_last_pack_cng_or_dtmf(0))
.Times(1);
EXPECT_CALL(*mock_delay_manager_, ResetPacketIatCount()).Times(1);
// Expectations when the second packet is inserted. Slightly different.
EXPECT_CALL(*mock_delay_manager_, last_pack_cng_or_dtmf())
.WillOnce(Return(0));
EXPECT_CALL(*mock_delay_manager_, SetPacketAudioLength(30))
.WillOnce(Return(0));
}
// Insert first packet.
neteq_->InsertPacket(rtp_header, payload, kFirstReceiveTime);
// Insert second packet.
rtp_header.timestamp += 160;
rtp_header.sequenceNumber += 1;
neteq_->InsertPacket(rtp_header, payload, kFirstReceiveTime + 155);
}
TEST_F(NetEqImplTest, InsertPacketsUntilBufferIsFull) {
UseNoMocks();
CreateInstance();
const int kPayloadLengthSamples = 80;
const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples; // PCM 16-bit.
const uint8_t kPayloadType = 17; // Just an arbitrary number.
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
uint8_t payload[kPayloadLengthBytes] = {0};
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = 0x1234;
rtp_header.timestamp = 0x12345678;
rtp_header.ssrc = 0x87654321;
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
SdpAudioFormat("l16", 8000, 1)));
// Insert packets. The buffer should not flush.
for (size_t i = 1; i <= config_.max_packets_in_buffer; ++i) {
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
rtp_header.timestamp += kPayloadLengthSamples;
rtp_header.sequenceNumber += 1;
EXPECT_EQ(i, packet_buffer_->NumPacketsInBuffer());
}
// Insert one more packet and make sure the buffer got flushed. That is, it
// should only hold one single packet.
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
EXPECT_EQ(1u, packet_buffer_->NumPacketsInBuffer());
const Packet* test_packet = packet_buffer_->PeekNextPacket();
EXPECT_EQ(rtp_header.timestamp, test_packet->timestamp);
EXPECT_EQ(rtp_header.sequenceNumber, test_packet->sequence_number);
}
TEST_F(NetEqImplTest, TestDtmfPacketAVT) {
TestDtmfPacket(8000);
}
TEST_F(NetEqImplTest, TestDtmfPacketAVT16kHz) {
TestDtmfPacket(16000);
}
TEST_F(NetEqImplTest, TestDtmfPacketAVT32kHz) {
TestDtmfPacket(32000);
}
TEST_F(NetEqImplTest, TestDtmfPacketAVT48kHz) {
TestDtmfPacket(48000);
}
// This test verifies that timestamps propagate from the incoming packets
// through to the sync buffer and to the playout timestamp.
TEST_F(NetEqImplTest, VerifyTimestampPropagation) {
const uint8_t kPayloadType = 17; // Just an arbitrary number.
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
const int kSampleRateHz = 8000;
const size_t kPayloadLengthSamples =
static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
const size_t kPayloadLengthBytes = kPayloadLengthSamples;
uint8_t payload[kPayloadLengthBytes] = {0};
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = 0x1234;
rtp_header.timestamp = 0x12345678;
rtp_header.ssrc = 0x87654321;
// This is a dummy decoder that produces as many output samples as the input
// has bytes. The output is an increasing series, starting at 1 for the first
// sample, and then increasing by 1 for each sample.
class CountingSamplesDecoder : public AudioDecoder {
public:
CountingSamplesDecoder() : next_value_(1) {}
// Produce as many samples as input bytes (|encoded_len|).
int DecodeInternal(const uint8_t* encoded,
size_t encoded_len,
int /* sample_rate_hz */,
int16_t* decoded,
SpeechType* speech_type) override {
for (size_t i = 0; i < encoded_len; ++i) {
decoded[i] = next_value_++;
}
*speech_type = kSpeech;
return rtc::checked_cast<int>(encoded_len);
}
void Reset() override { next_value_ = 1; }
int SampleRateHz() const override { return kSampleRateHz; }
size_t Channels() const override { return 1; }
uint16_t next_value() const { return next_value_; }
private:
int16_t next_value_;
} decoder_;
rtc::scoped_refptr<AudioDecoderFactory> decoder_factory =
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&decoder_);
UseNoMocks();
CreateInstance(decoder_factory);
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
SdpAudioFormat("L16", 8000, 1)));
// Insert one packet.
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
// Pull audio once.
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
AudioFrame output;
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
ASSERT_FALSE(muted);
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
// Start with a simple check that the fake decoder is behaving as expected.
EXPECT_EQ(kPayloadLengthSamples,
static_cast<size_t>(decoder_.next_value() - 1));
// The value of the last of the output samples is the same as the number of
// samples played from the decoded packet. Thus, this number + the RTP
// timestamp should match the playout timestamp.
// Wrap the expected value in an absl::optional to compare them as such.
EXPECT_EQ(
absl::optional<uint32_t>(rtp_header.timestamp +
output.data()[output.samples_per_channel_ - 1]),
neteq_->GetPlayoutTimestamp());
// Check the timestamp for the last value in the sync buffer. This should
// be one full frame length ahead of the RTP timestamp.
const SyncBuffer* sync_buffer = neteq_->sync_buffer_for_test();
ASSERT_TRUE(sync_buffer != NULL);
EXPECT_EQ(rtp_header.timestamp + kPayloadLengthSamples,
sync_buffer->end_timestamp());
// Check that the number of samples still to play from the sync buffer add
// up with what was already played out.
EXPECT_EQ(
kPayloadLengthSamples - output.data()[output.samples_per_channel_ - 1],
sync_buffer->FutureLength());
}
TEST_F(NetEqImplTest, ReorderedPacket) {
UseNoMocks();
// Create a mock decoder object.
MockAudioDecoder mock_decoder;
CreateInstance(
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&mock_decoder));
const uint8_t kPayloadType = 17; // Just an arbitrary number.
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
const int kSampleRateHz = 8000;
const size_t kPayloadLengthSamples =
static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
const size_t kPayloadLengthBytes = kPayloadLengthSamples;
uint8_t payload[kPayloadLengthBytes] = {0};
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = 0x1234;
rtp_header.timestamp = 0x12345678;
rtp_header.ssrc = 0x87654321;
EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return());
EXPECT_CALL(mock_decoder, SampleRateHz())
.WillRepeatedly(Return(kSampleRateHz));
EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1));
EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _))
.WillRepeatedly(Return(0));
EXPECT_CALL(mock_decoder, PacketDuration(_, kPayloadLengthBytes))
.WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples)));
int16_t dummy_output[kPayloadLengthSamples] = {0};
// The below expectation will make the mock decoder write
// |kPayloadLengthSamples| zeros to the output array, and mark it as speech.
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(0), kPayloadLengthBytes,
kSampleRateHz, _, _))
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kPayloadLengthSamples),
SetArgPointee<4>(AudioDecoder::kSpeech),
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
SdpAudioFormat("L16", 8000, 1)));
// Insert one packet.
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
// Pull audio once.
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
AudioFrame output;
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
// Insert two more packets. The first one is out of order, and is already too
// old, the second one is the expected next packet.
rtp_header.sequenceNumber -= 1;
rtp_header.timestamp -= kPayloadLengthSamples;
payload[0] = 1;
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
rtp_header.sequenceNumber += 2;
rtp_header.timestamp += 2 * kPayloadLengthSamples;
payload[0] = 2;
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
// Expect only the second packet to be decoded (the one with "2" as the first
// payload byte).
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(2), kPayloadLengthBytes,
kSampleRateHz, _, _))
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kPayloadLengthSamples),
SetArgPointee<4>(AudioDecoder::kSpeech),
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
// Pull audio once.
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
// Now check the packet buffer, and make sure it is empty, since the
// out-of-order packet should have been discarded.
EXPECT_TRUE(packet_buffer_->Empty());
EXPECT_CALL(mock_decoder, Die());
}
// This test verifies that NetEq can handle the situation where the first
// incoming packet is rejected.
TEST_F(NetEqImplTest, FirstPacketUnknown) {
UseNoMocks();
CreateInstance();
const uint8_t kPayloadType = 17; // Just an arbitrary number.
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
const int kSampleRateHz = 8000;
const size_t kPayloadLengthSamples =
static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
const size_t kPayloadLengthBytes = kPayloadLengthSamples * 2;
uint8_t payload[kPayloadLengthBytes] = {0};
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = 0x1234;
rtp_header.timestamp = 0x12345678;
rtp_header.ssrc = 0x87654321;
// Insert one packet. Note that we have not registered any payload type, so
// this packet will be rejected.
EXPECT_EQ(NetEq::kFail,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
// Pull audio once.
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
AudioFrame output;
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
ASSERT_LE(output.samples_per_channel_, kMaxOutputSize);
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(AudioFrame::kPLC, output.speech_type_);
// Register the payload type.
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
SdpAudioFormat("l16", 8000, 1)));
// Insert 10 packets.
for (size_t i = 0; i < 10; ++i) {
rtp_header.sequenceNumber++;
rtp_header.timestamp += kPayloadLengthSamples;
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
EXPECT_EQ(i + 1, packet_buffer_->NumPacketsInBuffer());
}
// Pull audio repeatedly and make sure we get normal output, that is not PLC.
for (size_t i = 0; i < 3; ++i) {
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
ASSERT_LE(output.samples_per_channel_, kMaxOutputSize);
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_)
<< "NetEq did not decode the packets as expected.";
}
}
// This test verifies that NetEq can handle comfort noise and enters/quits codec
// internal CNG mode properly.
TEST_F(NetEqImplTest, CodecInternalCng) {
UseNoMocks();
// Create a mock decoder object.
MockAudioDecoder mock_decoder;
CreateInstance(
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&mock_decoder));
const uint8_t kPayloadType = 17; // Just an arbitrary number.
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
const int kSampleRateKhz = 48;
const size_t kPayloadLengthSamples =
static_cast<size_t>(20 * kSampleRateKhz); // 20 ms.
const size_t kPayloadLengthBytes = 10;
uint8_t payload[kPayloadLengthBytes] = {0};
int16_t dummy_output[kPayloadLengthSamples] = {0};
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = 0x1234;
rtp_header.timestamp = 0x12345678;
rtp_header.ssrc = 0x87654321;
EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return());
EXPECT_CALL(mock_decoder, SampleRateHz())
.WillRepeatedly(Return(kSampleRateKhz * 1000));
EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1));
EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _))
.WillRepeatedly(Return(0));
EXPECT_CALL(mock_decoder, PacketDuration(_, kPayloadLengthBytes))
.WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples)));
// Packed duration when asking the decoder for more CNG data (without a new
// packet).
EXPECT_CALL(mock_decoder, PacketDuration(nullptr, 0))
.WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples)));
// Pointee(x) verifies that first byte of the payload equals x, this makes it
// possible to verify that the correct payload is fed to Decode().
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(0), kPayloadLengthBytes,
kSampleRateKhz * 1000, _, _))
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kPayloadLengthSamples),
SetArgPointee<4>(AudioDecoder::kSpeech),
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(1), kPayloadLengthBytes,
kSampleRateKhz * 1000, _, _))
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kPayloadLengthSamples),
SetArgPointee<4>(AudioDecoder::kComfortNoise),
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
EXPECT_CALL(mock_decoder,
DecodeInternal(IsNull(), 0, kSampleRateKhz * 1000, _, _))
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kPayloadLengthSamples),
SetArgPointee<4>(AudioDecoder::kComfortNoise),
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(2), kPayloadLengthBytes,
kSampleRateKhz * 1000, _, _))
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kPayloadLengthSamples),
SetArgPointee<4>(AudioDecoder::kSpeech),
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
SdpAudioFormat("opus", 48000, 2)));
// Insert one packet (decoder will return speech).
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
// Insert second packet (decoder will return CNG).
payload[0] = 1;
rtp_header.sequenceNumber++;
rtp_header.timestamp += kPayloadLengthSamples;
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateKhz);
AudioFrame output;
AudioFrame::SpeechType expected_type[8] = {
AudioFrame::kNormalSpeech, AudioFrame::kNormalSpeech,
AudioFrame::kCNG, AudioFrame::kCNG,
AudioFrame::kCNG, AudioFrame::kCNG,
AudioFrame::kNormalSpeech, AudioFrame::kNormalSpeech
};
int expected_timestamp_increment[8] = {
-1, // will not be used.
10 * kSampleRateKhz,
-1, -1, // timestamp will be empty during CNG mode; indicated by -1 here.
-1, -1,
50 * kSampleRateKhz, 10 * kSampleRateKhz
};
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
absl::optional<uint32_t> last_timestamp = neteq_->GetPlayoutTimestamp();
ASSERT_TRUE(last_timestamp);
// Lambda for verifying the timestamps.
auto verify_timestamp = [&last_timestamp, &expected_timestamp_increment](
absl::optional<uint32_t> ts, size_t i) {
if (expected_timestamp_increment[i] == -1) {
// Expect to get an empty timestamp value during CNG and PLC.
EXPECT_FALSE(ts) << "i = " << i;
} else {
ASSERT_TRUE(ts) << "i = " << i;
EXPECT_EQ(*ts, *last_timestamp + expected_timestamp_increment[i])
<< "i = " << i;
last_timestamp = ts;
}
};
for (size_t i = 1; i < 6; ++i) {
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(expected_type[i - 1], output.speech_type_);
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
SCOPED_TRACE("");
verify_timestamp(neteq_->GetPlayoutTimestamp(), i);
}
// Insert third packet, which leaves a gap from last packet.
payload[0] = 2;
rtp_header.sequenceNumber += 2;
rtp_header.timestamp += 2 * kPayloadLengthSamples;
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
for (size_t i = 6; i < 8; ++i) {
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(expected_type[i - 1], output.speech_type_);
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
SCOPED_TRACE("");
verify_timestamp(neteq_->GetPlayoutTimestamp(), i);
}
// Now check the packet buffer, and make sure it is empty.
EXPECT_TRUE(packet_buffer_->Empty());
EXPECT_CALL(mock_decoder, Die());
}
TEST_F(NetEqImplTest, UnsupportedDecoder) {
UseNoMocks();
::testing::NiceMock<MockAudioDecoder> decoder;
CreateInstance(
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&decoder));
static const size_t kNetEqMaxFrameSize = 5760; // 120 ms @ 48 kHz.
static const size_t kChannels = 2;
const uint8_t kPayloadType = 17; // Just an arbitrary number.
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
const int kSampleRateHz = 8000;
const size_t kPayloadLengthSamples =
static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
const size_t kPayloadLengthBytes = 1;
uint8_t payload[kPayloadLengthBytes] = {0};
int16_t dummy_output[kPayloadLengthSamples * kChannels] = {0};
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = 0x1234;
rtp_header.timestamp = 0x12345678;
rtp_header.ssrc = 0x87654321;
const uint8_t kFirstPayloadValue = 1;
const uint8_t kSecondPayloadValue = 2;
EXPECT_CALL(decoder,
PacketDuration(Pointee(kFirstPayloadValue), kPayloadLengthBytes))
.Times(AtLeast(1))
.WillRepeatedly(Return(rtc::checked_cast<int>(kNetEqMaxFrameSize + 1)));
EXPECT_CALL(decoder, DecodeInternal(Pointee(kFirstPayloadValue), _, _, _, _))
.Times(0);
EXPECT_CALL(decoder, DecodeInternal(Pointee(kSecondPayloadValue),
kPayloadLengthBytes, kSampleRateHz, _, _))
.Times(1)
.WillOnce(DoAll(
SetArrayArgument<3>(dummy_output,
dummy_output + kPayloadLengthSamples * kChannels),
SetArgPointee<4>(AudioDecoder::kSpeech),
Return(static_cast<int>(kPayloadLengthSamples * kChannels))));
EXPECT_CALL(decoder,
PacketDuration(Pointee(kSecondPayloadValue), kPayloadLengthBytes))
.Times(AtLeast(1))
.WillRepeatedly(Return(rtc::checked_cast<int>(kNetEqMaxFrameSize)));
EXPECT_CALL(decoder, SampleRateHz())
.WillRepeatedly(Return(kSampleRateHz));
EXPECT_CALL(decoder, Channels())
.WillRepeatedly(Return(kChannels));
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
SdpAudioFormat("L16", 8000, 1)));
// Insert one packet.
payload[0] = kFirstPayloadValue; // This will make Decode() fail.
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
// Insert another packet.
payload[0] = kSecondPayloadValue; // This will make Decode() successful.
rtp_header.sequenceNumber++;
// The second timestamp needs to be at least 30 ms after the first to make
// the second packet get decoded.
rtp_header.timestamp += 3 * kPayloadLengthSamples;
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
AudioFrame output;
bool muted;
// First call to GetAudio will try to decode the "faulty" packet.
// Expect kFail return value.
EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&output, &muted));
// Output size and number of channels should be correct.
const size_t kExpectedOutputSize = 10 * (kSampleRateHz / 1000) * kChannels;
EXPECT_EQ(kExpectedOutputSize, output.samples_per_channel_ * kChannels);
EXPECT_EQ(kChannels, output.num_channels_);
// Second call to GetAudio will decode the packet that is ok. No errors are
// expected.
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
EXPECT_EQ(kExpectedOutputSize, output.samples_per_channel_ * kChannels);
EXPECT_EQ(kChannels, output.num_channels_);
// Die isn't called through NiceMock (since it's called by the
// MockAudioDecoder constructor), so it needs to be mocked explicitly.
EXPECT_CALL(decoder, Die());
}
// This test inserts packets until the buffer is flushed. After that, it asks
// NetEq for the network statistics. The purpose of the test is to make sure
// that even though the buffer size increment is negative (which it becomes when
// the packet causing a flush is inserted), the packet length stored in the
// decision logic remains valid.
TEST_F(NetEqImplTest, FloodBufferAndGetNetworkStats) {
UseNoMocks();
CreateInstance();
const size_t kPayloadLengthSamples = 80;
const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples; // PCM 16-bit.
const uint8_t kPayloadType = 17; // Just an arbitrary number.
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
uint8_t payload[kPayloadLengthBytes] = {0};
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = 0x1234;
rtp_header.timestamp = 0x12345678;
rtp_header.ssrc = 0x87654321;
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
SdpAudioFormat("l16", 8000, 1)));
// Insert packets until the buffer flushes.
for (size_t i = 0; i <= config_.max_packets_in_buffer; ++i) {
EXPECT_EQ(i, packet_buffer_->NumPacketsInBuffer());
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
rtp_header.timestamp += rtc::checked_cast<uint32_t>(kPayloadLengthSamples);
++rtp_header.sequenceNumber;
}
EXPECT_EQ(1u, packet_buffer_->NumPacketsInBuffer());
// Ask for network statistics. This should not crash.
NetEqNetworkStatistics stats;
EXPECT_EQ(NetEq::kOK, neteq_->NetworkStatistics(&stats));
}
TEST_F(NetEqImplTest, DecodedPayloadTooShort) {
UseNoMocks();
// Create a mock decoder object.
MockAudioDecoder mock_decoder;
CreateInstance(
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&mock_decoder));
const uint8_t kPayloadType = 17; // Just an arbitrary number.
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
const int kSampleRateHz = 8000;
const size_t kPayloadLengthSamples =
static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms.
const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples;
uint8_t payload[kPayloadLengthBytes] = {0};
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = 0x1234;
rtp_header.timestamp = 0x12345678;
rtp_header.ssrc = 0x87654321;
EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return());
EXPECT_CALL(mock_decoder, SampleRateHz())
.WillRepeatedly(Return(kSampleRateHz));
EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1));
EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _))
.WillRepeatedly(Return(0));
EXPECT_CALL(mock_decoder, PacketDuration(_, _))
.WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples)));
int16_t dummy_output[kPayloadLengthSamples] = {0};
// The below expectation will make the mock decoder write
// |kPayloadLengthSamples| - 5 zeros to the output array, and mark it as
// speech. That is, the decoded length is 5 samples shorter than the expected.
EXPECT_CALL(mock_decoder,
DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _))
.WillOnce(
DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kPayloadLengthSamples - 5),
SetArgPointee<4>(AudioDecoder::kSpeech),
Return(rtc::checked_cast<int>(kPayloadLengthSamples - 5))));
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
SdpAudioFormat("L16", 8000, 1)));
// Insert one packet.
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
EXPECT_EQ(5u, neteq_->sync_buffer_for_test()->FutureLength());
// Pull audio once.
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
AudioFrame output;
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
EXPECT_CALL(mock_decoder, Die());
}
// This test checks the behavior of NetEq when audio decoder fails.
TEST_F(NetEqImplTest, DecodingError) {
UseNoMocks();
// Create a mock decoder object.
MockAudioDecoder mock_decoder;
CreateInstance(
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&mock_decoder));
const uint8_t kPayloadType = 17; // Just an arbitrary number.
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
const int kSampleRateHz = 8000;
const int kDecoderErrorCode = -97; // Any negative number.
// We let decoder return 5 ms each time, and therefore, 2 packets make 10 ms.
const size_t kFrameLengthSamples =
static_cast<size_t>(5 * kSampleRateHz / 1000);
const size_t kPayloadLengthBytes = 1; // This can be arbitrary.
uint8_t payload[kPayloadLengthBytes] = {0};
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = 0x1234;
rtp_header.timestamp = 0x12345678;
rtp_header.ssrc = 0x87654321;
EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return());
EXPECT_CALL(mock_decoder, SampleRateHz())
.WillRepeatedly(Return(kSampleRateHz));
EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1));
EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _))
.WillRepeatedly(Return(0));
EXPECT_CALL(mock_decoder, PacketDuration(_, _))
.WillRepeatedly(Return(rtc::checked_cast<int>(kFrameLengthSamples)));
EXPECT_CALL(mock_decoder, ErrorCode())
.WillOnce(Return(kDecoderErrorCode));
EXPECT_CALL(mock_decoder, HasDecodePlc())
.WillOnce(Return(false));
int16_t dummy_output[kFrameLengthSamples] = {0};
{
InSequence sequence; // Dummy variable.
// Mock decoder works normally the first time.
EXPECT_CALL(mock_decoder,
DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _))
.Times(3)
.WillRepeatedly(
DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kFrameLengthSamples),
SetArgPointee<4>(AudioDecoder::kSpeech),
Return(rtc::checked_cast<int>(kFrameLengthSamples))))
.RetiresOnSaturation();
// Then mock decoder fails. A common reason for failure can be buffer being
// too short
EXPECT_CALL(mock_decoder,
DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _))
.WillOnce(Return(-1))
.RetiresOnSaturation();
// Mock decoder finally returns to normal.
EXPECT_CALL(mock_decoder,
DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _))
.Times(2)
.WillRepeatedly(
DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kFrameLengthSamples),
SetArgPointee<4>(AudioDecoder::kSpeech),
Return(rtc::checked_cast<int>(kFrameLengthSamples))));
}
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
SdpAudioFormat("L16", 8000, 1)));
// Insert packets.
for (int i = 0; i < 6; ++i) {
rtp_header.sequenceNumber += 1;
rtp_header.timestamp += kFrameLengthSamples;
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
}
// Pull audio.
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
AudioFrame output;
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
// Pull audio again. Decoder fails.
EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&output, &muted));
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
// We are not expecting anything for output.speech_type_, since an error was
// returned.
// Pull audio again, should continue an expansion.
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(AudioFrame::kPLC, output.speech_type_);
// Pull audio again, should behave normal.
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_);
EXPECT_CALL(mock_decoder, Die());
}
// This test checks the behavior of NetEq when audio decoder fails during CNG.
TEST_F(NetEqImplTest, DecodingErrorDuringInternalCng) {
UseNoMocks();
// Create a mock decoder object.
MockAudioDecoder mock_decoder;
CreateInstance(
new rtc::RefCountedObject<test::AudioDecoderProxyFactory>(&mock_decoder));
const uint8_t kPayloadType = 17; // Just an arbitrary number.
const uint32_t kReceiveTime = 17; // Value doesn't matter for this test.
const int kSampleRateHz = 8000;
const int kDecoderErrorCode = -97; // Any negative number.
// We let decoder return 5 ms each time, and therefore, 2 packets make 10 ms.
const size_t kFrameLengthSamples =
static_cast<size_t>(5 * kSampleRateHz / 1000);
const size_t kPayloadLengthBytes = 1; // This can be arbitrary.
uint8_t payload[kPayloadLengthBytes] = {0};
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = 0x1234;
rtp_header.timestamp = 0x12345678;
rtp_header.ssrc = 0x87654321;
EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return());
EXPECT_CALL(mock_decoder, SampleRateHz())
.WillRepeatedly(Return(kSampleRateHz));
EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1));
EXPECT_CALL(mock_decoder, IncomingPacket(_, kPayloadLengthBytes, _, _, _))
.WillRepeatedly(Return(0));
EXPECT_CALL(mock_decoder, PacketDuration(_, _))
.WillRepeatedly(Return(rtc::checked_cast<int>(kFrameLengthSamples)));
EXPECT_CALL(mock_decoder, ErrorCode())
.WillOnce(Return(kDecoderErrorCode));
int16_t dummy_output[kFrameLengthSamples] = {0};
{
InSequence sequence; // Dummy variable.
// Mock decoder works normally the first 2 times.
EXPECT_CALL(mock_decoder,
DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _))
.Times(2)
.WillRepeatedly(
DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kFrameLengthSamples),
SetArgPointee<4>(AudioDecoder::kComfortNoise),
Return(rtc::checked_cast<int>(kFrameLengthSamples))))
.RetiresOnSaturation();
// Then mock decoder fails. A common reason for failure can be buffer being
// too short
EXPECT_CALL(mock_decoder, DecodeInternal(nullptr, 0, kSampleRateHz, _, _))
.WillOnce(Return(-1))
.RetiresOnSaturation();
// Mock decoder finally returns to normal.
EXPECT_CALL(mock_decoder, DecodeInternal(nullptr, 0, kSampleRateHz, _, _))
.Times(2)
.WillRepeatedly(
DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kFrameLengthSamples),
SetArgPointee<4>(AudioDecoder::kComfortNoise),
Return(rtc::checked_cast<int>(kFrameLengthSamples))));
}
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
SdpAudioFormat("l16", 8000, 1)));
// Insert 2 packets. This will make netEq into codec internal CNG mode.
for (int i = 0; i < 2; ++i) {
rtp_header.sequenceNumber += 1;
rtp_header.timestamp += kFrameLengthSamples;
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
}
// Pull audio.
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000);
AudioFrame output;
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(AudioFrame::kCNG, output.speech_type_);
// Pull audio again. Decoder fails.
EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&output, &muted));
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
// We are not expecting anything for output.speech_type_, since an error was
// returned.
// Pull audio again, should resume codec CNG.
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(AudioFrame::kCNG, output.speech_type_);
EXPECT_CALL(mock_decoder, Die());
}
// Tests that the return value from last_output_sample_rate_hz() is equal to the
// configured inital sample rate.
TEST_F(NetEqImplTest, InitialLastOutputSampleRate) {
UseNoMocks();
config_.sample_rate_hz = 48000;
CreateInstance();
EXPECT_EQ(48000, neteq_->last_output_sample_rate_hz());
}
TEST_F(NetEqImplTest, TickTimerIncrement) {
UseNoMocks();
CreateInstance();
ASSERT_TRUE(tick_timer_);
EXPECT_EQ(0u, tick_timer_->ticks());
AudioFrame output;
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
EXPECT_EQ(1u, tick_timer_->ticks());
}
TEST_F(NetEqImplTest, SetBaseMinimumDelay) {
UseNoMocks();
use_mock_delay_manager_ = true;
CreateInstance();
EXPECT_CALL(*mock_delay_manager_, SetBaseMinimumDelay(_))
.WillOnce(Return(true))
.WillOnce(Return(false));
const int delay_ms = 200;
EXPECT_EQ(true, neteq_->SetBaseMinimumDelayMs(delay_ms));
EXPECT_EQ(false, neteq_->SetBaseMinimumDelayMs(delay_ms));
}
TEST_F(NetEqImplTest, GetBaseMinimumDelayMs) {
UseNoMocks();
use_mock_delay_manager_ = true;
CreateInstance();
const int delay_ms = 200;
EXPECT_CALL(*mock_delay_manager_, GetBaseMinimumDelay())
.WillOnce(Return(delay_ms));
EXPECT_EQ(delay_ms, neteq_->GetBaseMinimumDelayMs());
}
TEST_F(NetEqImplTest, TargetDelayMs) {
UseNoMocks();
use_mock_delay_manager_ = true;
CreateInstance();
// Let the dummy target delay be 17 packets.
constexpr int kTargetLevelPacketsQ8 = 17 << 8;
EXPECT_CALL(*mock_delay_manager_, TargetLevel())
.WillOnce(Return(kTargetLevelPacketsQ8));
// Default packet size before any packet has been decoded is 30 ms, so we are
// expecting 17 * 30 = 510 ms target delay.
EXPECT_EQ(17 * 30, neteq_->TargetDelayMs());
}
TEST_F(NetEqImplTest, InsertEmptyPacket) {
UseNoMocks();
use_mock_delay_manager_ = true;
CreateInstance();
RTPHeader rtp_header;
rtp_header.payloadType = 17;
rtp_header.sequenceNumber = 0x1234;
rtp_header.timestamp = 0x12345678;
rtp_header.ssrc = 0x87654321;
EXPECT_CALL(*mock_delay_manager_, RegisterEmptyPacket());
neteq_->InsertEmptyPacket(rtp_header);
}
TEST_F(NetEqImplTest, EnableRtxHandling) {
UseNoMocks();
use_mock_delay_manager_ = true;
config_.enable_rtx_handling = true;
CreateInstance();
EXPECT_CALL(*mock_delay_manager_, BufferLimits(_, _))
.Times(1)
.WillOnce(DoAll(SetArgPointee<0>(0), SetArgPointee<1>(0)));
const int kPayloadLengthSamples = 80;
const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples; // PCM 16-bit.
const uint8_t kPayloadType = 17; // Just an arbitrary number.
const uint32_t kReceiveTime = 17;
uint8_t payload[kPayloadLengthBytes] = {0};
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = 0x1234;
rtp_header.timestamp = 0x12345678;
rtp_header.ssrc = 0x87654321;
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
SdpAudioFormat("l16", 8000, 1)));
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
AudioFrame output;
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
// Insert second packet that was sent before the first packet.
rtp_header.sequenceNumber -= 1;
rtp_header.timestamp -= kPayloadLengthSamples;
EXPECT_CALL(*mock_delay_manager_,
Update(rtp_header.sequenceNumber, rtp_header.timestamp, _));
EXPECT_EQ(NetEq::kOK,
neteq_->InsertPacket(rtp_header, payload, kReceiveTime));
}
class Decoder120ms : public AudioDecoder {
public:
Decoder120ms(int sample_rate_hz, SpeechType speech_type)
: sample_rate_hz_(sample_rate_hz),
next_value_(1),
speech_type_(speech_type) {}
int DecodeInternal(const uint8_t* encoded,
size_t encoded_len,
int sample_rate_hz,
int16_t* decoded,
SpeechType* speech_type) override {
EXPECT_EQ(sample_rate_hz_, sample_rate_hz);
size_t decoded_len =
rtc::CheckedDivExact(sample_rate_hz, 1000) * 120 * Channels();
for (size_t i = 0; i < decoded_len; ++i) {
decoded[i] = next_value_++;
}
*speech_type = speech_type_;
return rtc::checked_cast<int>(decoded_len);
}
void Reset() override { next_value_ = 1; }
int SampleRateHz() const override { return sample_rate_hz_; }
size_t Channels() const override { return 2; }
private:
int sample_rate_hz_;
int16_t next_value_;
SpeechType speech_type_;
};
class NetEqImplTest120ms : public NetEqImplTest {
protected:
NetEqImplTest120ms() : NetEqImplTest() {}
virtual ~NetEqImplTest120ms() {}
void CreateInstanceNoMocks() {
UseNoMocks();
CreateInstance(decoder_factory_);
EXPECT_TRUE(neteq_->RegisterPayloadType(
kPayloadType, SdpAudioFormat("opus", 48000, 2, {{"stereo", "1"}})));
}
void CreateInstanceWithDelayManagerMock() {
UseNoMocks();
use_mock_delay_manager_ = true;
CreateInstance(decoder_factory_);
EXPECT_TRUE(neteq_->RegisterPayloadType(
kPayloadType, SdpAudioFormat("opus", 48000, 2, {{"stereo", "1"}})));
}
uint32_t timestamp_diff_between_packets() const {
return rtc::CheckedDivExact(kSamplingFreq_, 1000u) * 120;
}
uint32_t first_timestamp() const { return 10u; }
void GetFirstPacket() {
bool muted;
for (int i = 0; i < 12; i++) {
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
EXPECT_FALSE(muted);
}
}
void InsertPacket(uint32_t timestamp) {
RTPHeader rtp_header;
rtp_header.payloadType = kPayloadType;
rtp_header.sequenceNumber = sequence_number_;
rtp_header.timestamp = timestamp;
rtp_header.ssrc = 15;
const size_t kPayloadLengthBytes = 1; // This can be arbitrary.
uint8_t payload[kPayloadLengthBytes] = {0};
EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload, 10));
sequence_number_++;
}
void Register120msCodec(AudioDecoder::SpeechType speech_type) {
const uint32_t sampling_freq = kSamplingFreq_;
decoder_factory_ =
new rtc::RefCountedObject<test::FunctionAudioDecoderFactory>(
[sampling_freq, speech_type]() {
std::unique_ptr<AudioDecoder> decoder =
absl::make_unique<Decoder120ms>(sampling_freq, speech_type);
RTC_CHECK_EQ(2, decoder->Channels());
return decoder;
});
}
rtc::scoped_refptr<AudioDecoderFactory> decoder_factory_;
AudioFrame output_;
const uint32_t kPayloadType = 17;
const uint32_t kSamplingFreq_ = 48000;
uint16_t sequence_number_ = 1;
};
TEST_F(NetEqImplTest120ms, CodecInternalCng) {
Register120msCodec(AudioDecoder::kComfortNoise);
CreateInstanceNoMocks();
InsertPacket(first_timestamp());
GetFirstPacket();
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
EXPECT_EQ(kCodecInternalCng, neteq_->last_operation_for_test());
}
TEST_F(NetEqImplTest120ms, Normal) {
Register120msCodec(AudioDecoder::kSpeech);
CreateInstanceNoMocks();
InsertPacket(first_timestamp());
GetFirstPacket();
EXPECT_EQ(kNormal, neteq_->last_operation_for_test());
}
TEST_F(NetEqImplTest120ms, Merge) {
Register120msCodec(AudioDecoder::kSpeech);
CreateInstanceWithDelayManagerMock();
InsertPacket(first_timestamp());
GetFirstPacket();
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
InsertPacket(first_timestamp() + 2 * timestamp_diff_between_packets());
// Delay manager reports a target level which should cause a Merge.
EXPECT_CALL(*mock_delay_manager_, TargetLevel()).WillOnce(Return(-10));
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
EXPECT_EQ(kMerge, neteq_->last_operation_for_test());
}
TEST_F(NetEqImplTest120ms, Expand) {
Register120msCodec(AudioDecoder::kSpeech);
CreateInstanceNoMocks();
InsertPacket(first_timestamp());
GetFirstPacket();
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
EXPECT_EQ(kExpand, neteq_->last_operation_for_test());
}
TEST_F(NetEqImplTest120ms, FastAccelerate) {
Register120msCodec(AudioDecoder::kSpeech);
CreateInstanceWithDelayManagerMock();
InsertPacket(first_timestamp());
GetFirstPacket();
InsertPacket(first_timestamp() + timestamp_diff_between_packets());
// Delay manager report buffer limit which should cause a FastAccelerate.
EXPECT_CALL(*mock_delay_manager_, BufferLimits(_, _))
.Times(1)
.WillOnce(DoAll(SetArgPointee<0>(0), SetArgPointee<1>(0)));
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
EXPECT_EQ(kFastAccelerate, neteq_->last_operation_for_test());
}
TEST_F(NetEqImplTest120ms, PreemptiveExpand) {
Register120msCodec(AudioDecoder::kSpeech);
CreateInstanceWithDelayManagerMock();
InsertPacket(first_timestamp());
GetFirstPacket();
InsertPacket(first_timestamp() + timestamp_diff_between_packets());
// Delay manager report buffer limit which should cause a PreemptiveExpand.
EXPECT_CALL(*mock_delay_manager_, BufferLimits(_, _))
.Times(1)
.WillOnce(DoAll(SetArgPointee<0>(100), SetArgPointee<1>(100)));
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
EXPECT_EQ(kPreemptiveExpand, neteq_->last_operation_for_test());
}
TEST_F(NetEqImplTest120ms, Accelerate) {
Register120msCodec(AudioDecoder::kSpeech);
CreateInstanceWithDelayManagerMock();
InsertPacket(first_timestamp());
GetFirstPacket();
InsertPacket(first_timestamp() + timestamp_diff_between_packets());
// Delay manager report buffer limit which should cause a Accelerate.
EXPECT_CALL(*mock_delay_manager_, BufferLimits(_, _))
.Times(1)
.WillOnce(DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2)));
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted));
EXPECT_EQ(kAccelerate, neteq_->last_operation_for_test());
}
}// namespace webrtc