webrtc/rtc_tools/py_event_log_analyzer/rtp_analyzer.py
Mirko Bonadei 8cc6695652 Reformat python files checked by pylint (part 1/2).
After recently changing .pylintrc (see [1]) we discovered that
the presubmit check always checks all the python files when just
one python file gets updated.

This CL moves all these files one step closer to what the linter
wants.

Autogenerated with:

# Added all the files under pylint control to ~/Desktop/to-reformat
cat ~/Desktop/to-reformat | xargs sed -i '1i\\'
git cl format --python --full

This is part 1 out of 2. The second part will fix function names and
will not be automated.

[1] - https://webrtc-review.googlesource.com/c/src/+/186664

No-Presubmit: True
Bug: webrtc:12114
Change-Id: Idfec4d759f209a2090440d0af2413a1ddc01b841
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/190980
Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org>
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#32530}
2020-10-30 10:13:11 +00:00

352 lines
13 KiB
Python

# Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
"""Displays statistics and plots graphs from RTC protobuf dump."""
from __future__ import division
from __future__ import print_function
import collections
import optparse
import os
import sys
import matplotlib.pyplot as plt
import numpy
import misc
import pb_parse
class RTPStatistics(object):
"""Has methods for calculating and plotting RTP stream statistics."""
BANDWIDTH_SMOOTHING_WINDOW_SIZE = 10
PLOT_RESOLUTION_MS = 50
def __init__(self, data_points):
"""Initializes object with data_points and computes simple statistics.
Computes percentages of number of packets and packet sizes by
SSRC.
Args:
data_points: list of pb_parse.DataPoints on which statistics are
calculated.
"""
self.data_points = data_points
self.ssrc_frequencies = misc.NormalizeCounter(
collections.Counter([pt.ssrc for pt in self.data_points]))
self.ssrc_size_table = misc.SsrcNormalizedSizeTable(self.data_points)
self.bandwidth_kbps = None
self.smooth_bw_kbps = None
def PrintHeaderStatistics(self):
print("{:>6}{:>14}{:>14}{:>6}{:>6}{:>3}{:>11}".format(
"SeqNo", "TimeStamp", "SendTime", "Size", "PT", "M", "SSRC"))
for point in self.data_points:
print("{:>6}{:>14}{:>14}{:>6}{:>6}{:>3}{:>11}".format(
point.sequence_number, point.timestamp,
int(point.arrival_timestamp_ms), point.size,
point.payload_type, point.marker_bit,
"0x{:x}".format(point.ssrc)))
def PrintSsrcInfo(self, ssrc_id, ssrc):
"""Prints packet and size statistics for a given SSRC.
Args:
ssrc_id: textual identifier of SSRC printed beside statistics for it.
ssrc: SSRC by which to filter data and display statistics
"""
filtered_ssrc = [
point for point in self.data_points if point.ssrc == ssrc
]
payloads = misc.NormalizeCounter(
collections.Counter(
[point.payload_type for point in filtered_ssrc]))
payload_info = "payload type(s): {}".format(", ".join(
str(payload) for payload in payloads))
print("{} 0x{:x} {}, {:.2f}% packets, {:.2f}% data".format(
ssrc_id, ssrc, payload_info, self.ssrc_frequencies[ssrc] * 100,
self.ssrc_size_table[ssrc] * 100))
print(" packet sizes:")
(bin_counts,
bin_bounds) = numpy.histogram([point.size for point in filtered_ssrc],
bins=5,
density=False)
bin_proportions = bin_counts / sum(bin_counts)
print("\n".join([
" {:.1f} - {:.1f}: {:.2f}%".format(bin_bounds[i],
bin_bounds[i + 1],
bin_proportions[i] * 100)
for i in range(len(bin_proportions))
]))
def ChooseSsrc(self):
"""Queries user for SSRC."""
if len(self.ssrc_frequencies) == 1:
chosen_ssrc = self.ssrc_frequencies.keys()[0]
self.PrintSsrcInfo("", chosen_ssrc)
return chosen_ssrc
ssrc_is_incoming = misc.SsrcDirections(self.data_points)
incoming = [
ssrc for ssrc in ssrc_is_incoming if ssrc_is_incoming[ssrc]
]
outgoing = [
ssrc for ssrc in ssrc_is_incoming if not ssrc_is_incoming[ssrc]
]
print("\nIncoming:\n")
for (i, ssrc) in enumerate(incoming):
self.PrintSsrcInfo(i, ssrc)
print("\nOutgoing:\n")
for (i, ssrc) in enumerate(outgoing):
self.PrintSsrcInfo(i + len(incoming), ssrc)
while True:
chosen_index = int(misc.get_input("choose one> "))
if 0 <= chosen_index < len(self.ssrc_frequencies):
return (incoming + outgoing)[chosen_index]
else:
print("Invalid index!")
def FilterSsrc(self, chosen_ssrc):
"""Filters and wraps data points.
Removes data points with `ssrc != chosen_ssrc`. Unwraps sequence
numbers and timestamps for the chosen selection.
"""
self.data_points = [
point for point in self.data_points if point.ssrc == chosen_ssrc
]
unwrapped_sequence_numbers = misc.Unwrap(
[point.sequence_number for point in self.data_points], 2**16 - 1)
for (data_point, sequence_number) in zip(self.data_points,
unwrapped_sequence_numbers):
data_point.sequence_number = sequence_number
unwrapped_timestamps = misc.Unwrap(
[point.timestamp for point in self.data_points], 2**32 - 1)
for (data_point, timestamp) in zip(self.data_points,
unwrapped_timestamps):
data_point.timestamp = timestamp
def PrintSequenceNumberStatistics(self):
seq_no_set = set(point.sequence_number for point in self.data_points)
missing_sequence_numbers = max(seq_no_set) - min(seq_no_set) + (
1 - len(seq_no_set))
print("Missing sequence numbers: {} out of {} ({:.2f}%)".format(
missing_sequence_numbers, len(seq_no_set),
100 * missing_sequence_numbers / len(seq_no_set)))
print("Duplicated packets: {}".format(
len(self.data_points) - len(seq_no_set)))
print("Reordered packets: {}".format(
misc.CountReordered(
[point.sequence_number for point in self.data_points])))
def EstimateFrequency(self, always_query_sample_rate):
"""Estimates frequency and updates data.
Guesses the most probable frequency by looking at changes in
timestamps (RFC 3550 section 5.1), calculates clock drifts and
sending time of packets. Updates `self.data_points` with changes
in delay and send time.
"""
delta_timestamp = (self.data_points[-1].timestamp -
self.data_points[0].timestamp)
delta_arr_timestamp = float(
(self.data_points[-1].arrival_timestamp_ms -
self.data_points[0].arrival_timestamp_ms))
freq_est = delta_timestamp / delta_arr_timestamp
freq_vec = [8, 16, 32, 48, 90]
freq = None
for f in freq_vec:
if abs((freq_est - f) / f) < 0.05:
freq = f
print("Estimated frequency: {:.3f}kHz".format(freq_est))
if freq is None or always_query_sample_rate:
if not always_query_sample_rate:
print("Frequency could not be guessed.", end=" ")
freq = int(misc.get_input("Input frequency (in kHz)> "))
else:
print("Guessed frequency: {}kHz".format(freq))
for point in self.data_points:
point.real_send_time_ms = (point.timestamp -
self.data_points[0].timestamp) / freq
point.delay = point.arrival_timestamp_ms - point.real_send_time_ms
def PrintDurationStatistics(self):
"""Prints delay, clock drift and bitrate statistics."""
min_delay = min(point.delay for point in self.data_points)
for point in self.data_points:
point.absdelay = point.delay - min_delay
stream_duration_sender = self.data_points[-1].real_send_time_ms / 1000
print("Stream duration at sender: {:.1f} seconds".format(
stream_duration_sender))
arrival_timestamps_ms = [
point.arrival_timestamp_ms for point in self.data_points
]
stream_duration_receiver = (max(arrival_timestamps_ms) -
min(arrival_timestamps_ms)) / 1000
print("Stream duration at receiver: {:.1f} seconds".format(
stream_duration_receiver))
print("Clock drift: {:.2f}%".format(
100 * (stream_duration_receiver / stream_duration_sender - 1)))
total_size = sum(point.size for point in self.data_points) * 8 / 1000
print("Send average bitrate: {:.2f} kbps".format(
total_size / stream_duration_sender))
print("Receive average bitrate: {:.2f} kbps".format(
total_size / stream_duration_receiver))
def RemoveReordered(self):
last = self.data_points[0]
data_points_ordered = [last]
for point in self.data_points[1:]:
if point.sequence_number > last.sequence_number and (
point.real_send_time_ms > last.real_send_time_ms):
data_points_ordered.append(point)
last = point
self.data_points = data_points_ordered
def ComputeBandwidth(self):
"""Computes bandwidth averaged over several consecutive packets.
The number of consecutive packets used in the average is
BANDWIDTH_SMOOTHING_WINDOW_SIZE. Averaging is done with
numpy.correlate.
"""
start_ms = self.data_points[0].real_send_time_ms
stop_ms = self.data_points[-1].real_send_time_ms
(self.bandwidth_kbps, _) = numpy.histogram(
[point.real_send_time_ms for point in self.data_points],
bins=numpy.arange(start_ms, stop_ms,
RTPStatistics.PLOT_RESOLUTION_MS),
weights=[
point.size * 8 / RTPStatistics.PLOT_RESOLUTION_MS
for point in self.data_points
])
correlate_filter = (
numpy.ones(RTPStatistics.BANDWIDTH_SMOOTHING_WINDOW_SIZE) /
RTPStatistics.BANDWIDTH_SMOOTHING_WINDOW_SIZE)
self.smooth_bw_kbps = numpy.correlate(self.bandwidth_kbps,
correlate_filter)
def PlotStatistics(self):
"""Plots changes in delay and average bandwidth."""
start_ms = self.data_points[0].real_send_time_ms
stop_ms = self.data_points[-1].real_send_time_ms
time_axis = numpy.arange(start_ms / 1000, stop_ms / 1000,
RTPStatistics.PLOT_RESOLUTION_MS / 1000)
delay = CalculateDelay(start_ms, stop_ms,
RTPStatistics.PLOT_RESOLUTION_MS,
self.data_points)
plt.figure(1)
plt.plot(time_axis, delay[:len(time_axis)])
plt.xlabel("Send time [s]")
plt.ylabel("Relative transport delay [ms]")
plt.figure(2)
plt.plot(time_axis[:len(self.smooth_bw_kbps)], self.smooth_bw_kbps)
plt.xlabel("Send time [s]")
plt.ylabel("Bandwidth [kbps]")
plt.show()
def CalculateDelay(start, stop, step, points):
"""Quantizes the time coordinates for the delay.
Quantizes points by rounding the timestamps downwards to the nearest
point in the time sequence start, start+step, start+2*step... Takes
the average of the delays of points rounded to the same. Returns
masked array, in which time points with no value are masked.
"""
grouped_delays = [[] for _ in numpy.arange(start, stop + step, step)]
rounded_value_index = lambda x: int((x - start) / step)
for point in points:
grouped_delays[rounded_value_index(point.real_send_time_ms)].append(
point.absdelay)
regularized_delays = [
numpy.average(arr) if arr else -1 for arr in grouped_delays
]
return numpy.ma.masked_values(regularized_delays, -1)
def main():
usage = "Usage: %prog [options] <filename of rtc event log>"
parser = optparse.OptionParser(usage=usage)
parser.add_option(
"--dump_header_to_stdout",
default=False,
action="store_true",
help="print header info to stdout; similar to rtp_analyze")
parser.add_option("--query_sample_rate",
default=False,
action="store_true",
help="always query user for real sample rate")
parser.add_option("--working_directory",
default=None,
action="store",
help="directory in which to search for relative paths")
(options, args) = parser.parse_args()
if len(args) < 1:
parser.print_help()
sys.exit(0)
input_file = args[0]
if options.working_directory and not os.path.isabs(input_file):
input_file = os.path.join(options.working_directory, input_file)
data_points = pb_parse.ParseProtobuf(input_file)
rtp_stats = RTPStatistics(data_points)
if options.dump_header_to_stdout:
print("Printing header info to stdout.", file=sys.stderr)
rtp_stats.PrintHeaderStatistics()
sys.exit(0)
chosen_ssrc = rtp_stats.ChooseSsrc()
print("Chosen SSRC: 0X{:X}".format(chosen_ssrc))
rtp_stats.FilterSsrc(chosen_ssrc)
print("Statistics:")
rtp_stats.PrintSequenceNumberStatistics()
rtp_stats.EstimateFrequency(options.query_sample_rate)
rtp_stats.PrintDurationStatistics()
rtp_stats.RemoveReordered()
rtp_stats.ComputeBandwidth()
rtp_stats.PlotStatistics()
if __name__ == "__main__":
main()