mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 22:00:47 +01:00

Bug: webrtc:9378 Change-Id: I6a66b9301cbadf1d6517bf7a96028099970a20a3 Reviewed-on: https://webrtc-review.googlesource.com/c/117964 Commit-Queue: Niels Moller <nisse@webrtc.org> Reviewed-by: Philip Eliasson <philipel@webrtc.org> Reviewed-by: Karl Wiberg <kwiberg@webrtc.org> Cr-Commit-Position: refs/heads/master@{#26585}
1583 lines
58 KiB
C++
1583 lines
58 KiB
C++
/*
|
|
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*
|
|
*/
|
|
|
|
#ifdef RTC_ENABLE_VP9
|
|
|
|
#include "modules/video_coding/codecs/vp9/vp9_impl.h"
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
#include "vpx/vp8cx.h"
|
|
#include "vpx/vp8dx.h"
|
|
#include "vpx/vpx_decoder.h"
|
|
#include "vpx/vpx_encoder.h"
|
|
|
|
#include "absl/memory/memory.h"
|
|
#include "api/video/color_space.h"
|
|
#include "api/video/i010_buffer.h"
|
|
#include "common_video/include/video_frame_buffer.h"
|
|
#include "common_video/libyuv/include/webrtc_libyuv.h"
|
|
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
|
|
#include "modules/video_coding/codecs/vp9/svc_rate_allocator.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/experiments/rate_control_settings.h"
|
|
#include "rtc_base/keep_ref_until_done.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/time_utils.h"
|
|
#include "rtc_base/trace_event.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
// Maps from gof_idx to encoder internal reference frame buffer index. These
|
|
// maps work for 1,2 and 3 temporal layers with GOF length of 1,2 and 4 frames.
|
|
uint8_t kRefBufIdx[4] = {0, 0, 0, 1};
|
|
uint8_t kUpdBufIdx[4] = {0, 0, 1, 0};
|
|
|
|
int kMaxNumTiles4kVideo = 8;
|
|
|
|
// Maximum allowed PID difference for variable frame-rate mode.
|
|
const int kMaxAllowedPidDIff = 8;
|
|
|
|
// Only positive speeds, range for real-time coding currently is: 5 - 8.
|
|
// Lower means slower/better quality, higher means fastest/lower quality.
|
|
int GetCpuSpeed(int width, int height) {
|
|
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || defined(ANDROID)
|
|
return 8;
|
|
#else
|
|
// For smaller resolutions, use lower speed setting (get some coding gain at
|
|
// the cost of increased encoding complexity).
|
|
if (width * height <= 352 * 288)
|
|
return 5;
|
|
else
|
|
return 7;
|
|
#endif
|
|
}
|
|
// Helper class for extracting VP9 colorspace.
|
|
ColorSpace ExtractVP9ColorSpace(vpx_color_space_t space_t,
|
|
vpx_color_range_t range_t,
|
|
unsigned int bit_depth) {
|
|
ColorSpace::PrimaryID primaries = ColorSpace::PrimaryID::kUnspecified;
|
|
ColorSpace::TransferID transfer = ColorSpace::TransferID::kUnspecified;
|
|
ColorSpace::MatrixID matrix = ColorSpace::MatrixID::kUnspecified;
|
|
switch (space_t) {
|
|
case VPX_CS_BT_601:
|
|
case VPX_CS_SMPTE_170:
|
|
primaries = ColorSpace::PrimaryID::kSMPTE170M;
|
|
transfer = ColorSpace::TransferID::kSMPTE170M;
|
|
matrix = ColorSpace::MatrixID::kSMPTE170M;
|
|
break;
|
|
case VPX_CS_SMPTE_240:
|
|
primaries = ColorSpace::PrimaryID::kSMPTE240M;
|
|
transfer = ColorSpace::TransferID::kSMPTE240M;
|
|
matrix = ColorSpace::MatrixID::kSMPTE240M;
|
|
break;
|
|
case VPX_CS_BT_709:
|
|
primaries = ColorSpace::PrimaryID::kBT709;
|
|
transfer = ColorSpace::TransferID::kBT709;
|
|
matrix = ColorSpace::MatrixID::kBT709;
|
|
break;
|
|
case VPX_CS_BT_2020:
|
|
primaries = ColorSpace::PrimaryID::kBT2020;
|
|
switch (bit_depth) {
|
|
case 8:
|
|
transfer = ColorSpace::TransferID::kBT709;
|
|
break;
|
|
case 10:
|
|
transfer = ColorSpace::TransferID::kBT2020_10;
|
|
break;
|
|
default:
|
|
RTC_NOTREACHED();
|
|
break;
|
|
}
|
|
matrix = ColorSpace::MatrixID::kBT2020_NCL;
|
|
break;
|
|
case VPX_CS_SRGB:
|
|
primaries = ColorSpace::PrimaryID::kBT709;
|
|
transfer = ColorSpace::TransferID::kIEC61966_2_1;
|
|
matrix = ColorSpace::MatrixID::kBT709;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ColorSpace::RangeID range = ColorSpace::RangeID::kInvalid;
|
|
switch (range_t) {
|
|
case VPX_CR_STUDIO_RANGE:
|
|
range = ColorSpace::RangeID::kLimited;
|
|
break;
|
|
case VPX_CR_FULL_RANGE:
|
|
range = ColorSpace::RangeID::kFull;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ColorSpace(primaries, transfer, matrix, range);
|
|
}
|
|
|
|
bool MoreLayersEnabled(const VideoBitrateAllocation& first,
|
|
const VideoBitrateAllocation& second) {
|
|
for (size_t sl_idx = 0; sl_idx < kMaxSpatialLayers; ++sl_idx) {
|
|
if (first.GetSpatialLayerSum(sl_idx) > 0 &&
|
|
second.GetSpatialLayerSum(sl_idx) == 0) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void VP9EncoderImpl::EncoderOutputCodedPacketCallback(vpx_codec_cx_pkt* pkt,
|
|
void* user_data) {
|
|
VP9EncoderImpl* enc = static_cast<VP9EncoderImpl*>(user_data);
|
|
enc->GetEncodedLayerFrame(pkt);
|
|
}
|
|
|
|
VP9EncoderImpl::VP9EncoderImpl(const cricket::VideoCodec& codec)
|
|
: encoded_image_(),
|
|
encoded_complete_callback_(nullptr),
|
|
profile_(
|
|
ParseSdpForVP9Profile(codec.params).value_or(VP9Profile::kProfile0)),
|
|
inited_(false),
|
|
timestamp_(0),
|
|
cpu_speed_(3),
|
|
rc_max_intra_target_(0),
|
|
encoder_(nullptr),
|
|
config_(nullptr),
|
|
raw_(nullptr),
|
|
input_image_(nullptr),
|
|
force_key_frame_(true),
|
|
pics_since_key_(0),
|
|
num_temporal_layers_(0),
|
|
num_spatial_layers_(0),
|
|
num_active_spatial_layers_(0),
|
|
layer_deactivation_requires_key_frame_(
|
|
field_trial::IsEnabled("WebRTC-Vp9IssueKeyFrameOnLayerDeactivation")),
|
|
is_svc_(false),
|
|
inter_layer_pred_(InterLayerPredMode::kOn),
|
|
external_ref_control_(false), // Set in InitEncode because of tests.
|
|
trusted_rate_controller_(RateControlSettings::ParseFromFieldTrials()
|
|
.LibvpxVp9TrustedRateController()),
|
|
full_superframe_drop_(true),
|
|
first_frame_in_picture_(true),
|
|
ss_info_needed_(false),
|
|
is_flexible_mode_(false) {
|
|
memset(&codec_, 0, sizeof(codec_));
|
|
memset(&svc_params_, 0, sizeof(vpx_svc_extra_cfg_t));
|
|
}
|
|
|
|
VP9EncoderImpl::~VP9EncoderImpl() {
|
|
Release();
|
|
}
|
|
|
|
int VP9EncoderImpl::Release() {
|
|
int ret_val = WEBRTC_VIDEO_CODEC_OK;
|
|
|
|
if (encoded_image_.buffer() != nullptr) {
|
|
delete[] encoded_image_.buffer();
|
|
encoded_image_.set_buffer(nullptr, 0);
|
|
}
|
|
if (encoder_ != nullptr) {
|
|
if (inited_) {
|
|
if (vpx_codec_destroy(encoder_)) {
|
|
ret_val = WEBRTC_VIDEO_CODEC_MEMORY;
|
|
}
|
|
}
|
|
delete encoder_;
|
|
encoder_ = nullptr;
|
|
}
|
|
if (config_ != nullptr) {
|
|
delete config_;
|
|
config_ = nullptr;
|
|
}
|
|
if (raw_ != nullptr) {
|
|
vpx_img_free(raw_);
|
|
raw_ = nullptr;
|
|
}
|
|
inited_ = false;
|
|
return ret_val;
|
|
}
|
|
|
|
bool VP9EncoderImpl::ExplicitlyConfiguredSpatialLayers() const {
|
|
// We check target_bitrate_bps of the 0th layer to see if the spatial layers
|
|
// (i.e. bitrates) were explicitly configured.
|
|
return codec_.spatialLayers[0].targetBitrate > 0;
|
|
}
|
|
|
|
bool VP9EncoderImpl::SetSvcRates(
|
|
const VideoBitrateAllocation& bitrate_allocation) {
|
|
config_->rc_target_bitrate = bitrate_allocation.get_sum_kbps();
|
|
|
|
if (ExplicitlyConfiguredSpatialLayers()) {
|
|
const bool layer_activation_requires_key_frame =
|
|
inter_layer_pred_ == InterLayerPredMode::kOff ||
|
|
inter_layer_pred_ == InterLayerPredMode::kOnKeyPic;
|
|
|
|
for (size_t sl_idx = 0; sl_idx < num_spatial_layers_; ++sl_idx) {
|
|
const bool was_layer_active = (config_->ss_target_bitrate[sl_idx] > 0);
|
|
config_->ss_target_bitrate[sl_idx] =
|
|
bitrate_allocation.GetSpatialLayerSum(sl_idx) / 1000;
|
|
|
|
for (size_t tl_idx = 0; tl_idx < num_temporal_layers_; ++tl_idx) {
|
|
config_->layer_target_bitrate[sl_idx * num_temporal_layers_ + tl_idx] =
|
|
bitrate_allocation.GetTemporalLayerSum(sl_idx, tl_idx) / 1000;
|
|
}
|
|
|
|
const bool is_active_layer = (config_->ss_target_bitrate[sl_idx] > 0);
|
|
if (!was_layer_active && is_active_layer &&
|
|
layer_activation_requires_key_frame) {
|
|
force_key_frame_ = true;
|
|
} else if (was_layer_active && !is_active_layer &&
|
|
layer_deactivation_requires_key_frame_) {
|
|
force_key_frame_ = true;
|
|
}
|
|
|
|
if (!was_layer_active) {
|
|
// Reset frame rate controller if layer is resumed after pause.
|
|
framerate_controller_[sl_idx].Reset();
|
|
}
|
|
|
|
framerate_controller_[sl_idx].SetTargetRate(
|
|
std::min(static_cast<float>(codec_.maxFramerate),
|
|
codec_.spatialLayers[sl_idx].maxFramerate));
|
|
}
|
|
} else {
|
|
float rate_ratio[VPX_MAX_LAYERS] = {0};
|
|
float total = 0;
|
|
for (int i = 0; i < num_spatial_layers_; ++i) {
|
|
if (svc_params_.scaling_factor_num[i] <= 0 ||
|
|
svc_params_.scaling_factor_den[i] <= 0) {
|
|
RTC_LOG(LS_ERROR) << "Scaling factors not specified!";
|
|
return false;
|
|
}
|
|
rate_ratio[i] = static_cast<float>(svc_params_.scaling_factor_num[i]) /
|
|
svc_params_.scaling_factor_den[i];
|
|
total += rate_ratio[i];
|
|
}
|
|
|
|
for (int i = 0; i < num_spatial_layers_; ++i) {
|
|
RTC_CHECK_GT(total, 0);
|
|
config_->ss_target_bitrate[i] = static_cast<unsigned int>(
|
|
config_->rc_target_bitrate * rate_ratio[i] / total);
|
|
if (num_temporal_layers_ == 1) {
|
|
config_->layer_target_bitrate[i] = config_->ss_target_bitrate[i];
|
|
} else if (num_temporal_layers_ == 2) {
|
|
config_->layer_target_bitrate[i * num_temporal_layers_] =
|
|
config_->ss_target_bitrate[i] * 2 / 3;
|
|
config_->layer_target_bitrate[i * num_temporal_layers_ + 1] =
|
|
config_->ss_target_bitrate[i];
|
|
} else if (num_temporal_layers_ == 3) {
|
|
config_->layer_target_bitrate[i * num_temporal_layers_] =
|
|
config_->ss_target_bitrate[i] / 2;
|
|
config_->layer_target_bitrate[i * num_temporal_layers_ + 1] =
|
|
config_->layer_target_bitrate[i * num_temporal_layers_] +
|
|
(config_->ss_target_bitrate[i] / 4);
|
|
config_->layer_target_bitrate[i * num_temporal_layers_ + 2] =
|
|
config_->ss_target_bitrate[i];
|
|
} else {
|
|
RTC_LOG(LS_ERROR) << "Unsupported number of temporal layers: "
|
|
<< num_temporal_layers_;
|
|
return false;
|
|
}
|
|
|
|
framerate_controller_[i].SetTargetRate(codec_.maxFramerate);
|
|
}
|
|
}
|
|
|
|
num_active_spatial_layers_ = 0;
|
|
for (int i = 0; i < num_spatial_layers_; ++i) {
|
|
if (config_->ss_target_bitrate[i] > 0) {
|
|
++num_active_spatial_layers_;
|
|
}
|
|
}
|
|
RTC_DCHECK_GT(num_active_spatial_layers_, 0);
|
|
|
|
return true;
|
|
}
|
|
|
|
int VP9EncoderImpl::SetRateAllocation(
|
|
const VideoBitrateAllocation& bitrate_allocation,
|
|
uint32_t frame_rate) {
|
|
if (!inited_) {
|
|
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
|
|
}
|
|
if (encoder_->err) {
|
|
return WEBRTC_VIDEO_CODEC_ERROR;
|
|
}
|
|
if (frame_rate < 1) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
// Update bit rate
|
|
if (codec_.maxBitrate > 0 &&
|
|
bitrate_allocation.get_sum_kbps() > codec_.maxBitrate) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
|
|
codec_.maxFramerate = frame_rate;
|
|
|
|
requested_bitrate_allocation_ = bitrate_allocation;
|
|
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
|
|
int VP9EncoderImpl::InitEncode(const VideoCodec* inst,
|
|
int number_of_cores,
|
|
size_t /*max_payload_size*/) {
|
|
if (inst == nullptr) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
if (inst->maxFramerate < 1) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
// Allow zero to represent an unspecified maxBitRate
|
|
if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
if (inst->width < 1 || inst->height < 1) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
if (number_of_cores < 1) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
if (inst->VP9().numberOfTemporalLayers > 3) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
// libvpx probably does not support more than 3 spatial layers.
|
|
if (inst->VP9().numberOfSpatialLayers > 3) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
|
|
int ret_val = Release();
|
|
if (ret_val < 0) {
|
|
return ret_val;
|
|
}
|
|
if (encoder_ == nullptr) {
|
|
encoder_ = new vpx_codec_ctx_t;
|
|
}
|
|
if (config_ == nullptr) {
|
|
config_ = new vpx_codec_enc_cfg_t;
|
|
}
|
|
timestamp_ = 0;
|
|
if (&codec_ != inst) {
|
|
codec_ = *inst;
|
|
}
|
|
|
|
force_key_frame_ = true;
|
|
pics_since_key_ = 0;
|
|
|
|
num_spatial_layers_ = inst->VP9().numberOfSpatialLayers;
|
|
RTC_DCHECK_GT(num_spatial_layers_, 0);
|
|
num_temporal_layers_ = inst->VP9().numberOfTemporalLayers;
|
|
if (num_temporal_layers_ == 0) {
|
|
num_temporal_layers_ = 1;
|
|
}
|
|
|
|
framerate_controller_ = std::vector<FramerateController>(
|
|
num_spatial_layers_, FramerateController(codec_.maxFramerate));
|
|
|
|
is_svc_ = (num_spatial_layers_ > 1 || num_temporal_layers_ > 1);
|
|
|
|
// Allocate memory for encoded image
|
|
if (encoded_image_.data() != nullptr) {
|
|
delete[] encoded_image_.data();
|
|
}
|
|
size_t frame_capacity =
|
|
CalcBufferSize(VideoType::kI420, codec_.width, codec_.height);
|
|
encoded_image_.set_buffer(new uint8_t[frame_capacity], frame_capacity);
|
|
encoded_image_._completeFrame = true;
|
|
// Populate encoder configuration with default values.
|
|
if (vpx_codec_enc_config_default(vpx_codec_vp9_cx(), config_, 0)) {
|
|
return WEBRTC_VIDEO_CODEC_ERROR;
|
|
}
|
|
|
|
vpx_img_fmt img_fmt = VPX_IMG_FMT_NONE;
|
|
unsigned int bits_for_storage = 8;
|
|
switch (profile_) {
|
|
case VP9Profile::kProfile0:
|
|
img_fmt = VPX_IMG_FMT_I420;
|
|
bits_for_storage = 8;
|
|
config_->g_bit_depth = VPX_BITS_8;
|
|
config_->g_profile = 0;
|
|
config_->g_input_bit_depth = 8;
|
|
break;
|
|
case VP9Profile::kProfile2:
|
|
img_fmt = VPX_IMG_FMT_I42016;
|
|
bits_for_storage = 16;
|
|
config_->g_bit_depth = VPX_BITS_10;
|
|
config_->g_profile = 2;
|
|
config_->g_input_bit_depth = 10;
|
|
break;
|
|
}
|
|
|
|
// Creating a wrapper to the image - setting image data to nullptr. Actual
|
|
// pointer will be set in encode. Setting align to 1, as it is meaningless
|
|
// (actual memory is not allocated).
|
|
raw_ =
|
|
vpx_img_wrap(nullptr, img_fmt, codec_.width, codec_.height, 1, nullptr);
|
|
raw_->bit_depth = bits_for_storage;
|
|
|
|
config_->g_w = codec_.width;
|
|
config_->g_h = codec_.height;
|
|
config_->rc_target_bitrate = inst->startBitrate; // in kbit/s
|
|
config_->g_error_resilient = is_svc_ ? VPX_ERROR_RESILIENT_DEFAULT : 0;
|
|
// Setting the time base of the codec.
|
|
config_->g_timebase.num = 1;
|
|
config_->g_timebase.den = 90000;
|
|
config_->g_lag_in_frames = 0; // 0- no frame lagging
|
|
config_->g_threads = 1;
|
|
// Rate control settings.
|
|
config_->rc_dropframe_thresh = inst->VP9().frameDroppingOn ? 30 : 0;
|
|
config_->rc_end_usage = VPX_CBR;
|
|
config_->g_pass = VPX_RC_ONE_PASS;
|
|
config_->rc_min_quantizer = 2;
|
|
config_->rc_max_quantizer = 52;
|
|
config_->rc_undershoot_pct = 50;
|
|
config_->rc_overshoot_pct = 50;
|
|
config_->rc_buf_initial_sz = 500;
|
|
config_->rc_buf_optimal_sz = 600;
|
|
config_->rc_buf_sz = 1000;
|
|
// Set the maximum target size of any key-frame.
|
|
rc_max_intra_target_ = MaxIntraTarget(config_->rc_buf_optimal_sz);
|
|
// Key-frame interval is enforced manually by this wrapper.
|
|
config_->kf_mode = VPX_KF_DISABLED;
|
|
// TODO(webm:1592): work-around for libvpx issue, as it can still
|
|
// put some key-frames at will even in VPX_KF_DISABLED kf_mode.
|
|
config_->kf_max_dist = inst->VP9().keyFrameInterval;
|
|
config_->kf_min_dist = config_->kf_max_dist;
|
|
config_->rc_resize_allowed = inst->VP9().automaticResizeOn ? 1 : 0;
|
|
// Determine number of threads based on the image size and #cores.
|
|
config_->g_threads =
|
|
NumberOfThreads(config_->g_w, config_->g_h, number_of_cores);
|
|
|
|
cpu_speed_ = GetCpuSpeed(config_->g_w, config_->g_h);
|
|
|
|
is_flexible_mode_ = inst->VP9().flexibleMode;
|
|
|
|
inter_layer_pred_ = inst->VP9().interLayerPred;
|
|
|
|
different_framerates_used_ = false;
|
|
for (size_t sl_idx = 1; sl_idx < num_spatial_layers_; ++sl_idx) {
|
|
if (std::abs(codec_.spatialLayers[sl_idx].maxFramerate -
|
|
codec_.spatialLayers[0].maxFramerate) > 1e-9) {
|
|
different_framerates_used_ = true;
|
|
}
|
|
}
|
|
|
|
if (different_framerates_used_ && !is_flexible_mode_) {
|
|
RTC_LOG(LS_ERROR) << "Flexible mode required for different framerates on "
|
|
"different spatial layers";
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
|
|
// External reference control is required for different frame rate on spatial
|
|
// layers because libvpx generates rtp incompatible references in this case.
|
|
external_ref_control_ = field_trial::IsEnabled("WebRTC-Vp9ExternalRefCtrl") ||
|
|
different_framerates_used_ ||
|
|
inter_layer_pred_ == InterLayerPredMode::kOn;
|
|
|
|
if (num_temporal_layers_ == 1) {
|
|
gof_.SetGofInfoVP9(kTemporalStructureMode1);
|
|
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING;
|
|
config_->ts_number_layers = 1;
|
|
config_->ts_rate_decimator[0] = 1;
|
|
config_->ts_periodicity = 1;
|
|
config_->ts_layer_id[0] = 0;
|
|
} else if (num_temporal_layers_ == 2) {
|
|
gof_.SetGofInfoVP9(kTemporalStructureMode2);
|
|
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0101;
|
|
config_->ts_number_layers = 2;
|
|
config_->ts_rate_decimator[0] = 2;
|
|
config_->ts_rate_decimator[1] = 1;
|
|
config_->ts_periodicity = 2;
|
|
config_->ts_layer_id[0] = 0;
|
|
config_->ts_layer_id[1] = 1;
|
|
} else if (num_temporal_layers_ == 3) {
|
|
gof_.SetGofInfoVP9(kTemporalStructureMode3);
|
|
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0212;
|
|
config_->ts_number_layers = 3;
|
|
config_->ts_rate_decimator[0] = 4;
|
|
config_->ts_rate_decimator[1] = 2;
|
|
config_->ts_rate_decimator[2] = 1;
|
|
config_->ts_periodicity = 4;
|
|
config_->ts_layer_id[0] = 0;
|
|
config_->ts_layer_id[1] = 2;
|
|
config_->ts_layer_id[2] = 1;
|
|
config_->ts_layer_id[3] = 2;
|
|
} else {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
|
|
if (external_ref_control_) {
|
|
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS;
|
|
if (num_temporal_layers_ > 1 && different_framerates_used_) {
|
|
// External reference control for several temporal layers with different
|
|
// frame rates on spatial layers is not implemented yet.
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
}
|
|
ref_buf_.clear();
|
|
|
|
return InitAndSetControlSettings(inst);
|
|
}
|
|
|
|
int VP9EncoderImpl::NumberOfThreads(int width,
|
|
int height,
|
|
int number_of_cores) {
|
|
// Keep the number of encoder threads equal to the possible number of column
|
|
// tiles, which is (1, 2, 4, 8). See comments below for VP9E_SET_TILE_COLUMNS.
|
|
if (width * height >= 1280 * 720 && number_of_cores > 4) {
|
|
return 4;
|
|
} else if (width * height >= 640 * 360 && number_of_cores > 2) {
|
|
return 2;
|
|
} else {
|
|
// Use 2 threads for low res on ARM.
|
|
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || \
|
|
defined(WEBRTC_ANDROID)
|
|
if (width * height >= 320 * 180 && number_of_cores > 2) {
|
|
return 2;
|
|
}
|
|
#endif
|
|
// 1 thread less than VGA.
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int VP9EncoderImpl::InitAndSetControlSettings(const VideoCodec* inst) {
|
|
// Set QP-min/max per spatial and temporal layer.
|
|
int tot_num_layers = num_spatial_layers_ * num_temporal_layers_;
|
|
for (int i = 0; i < tot_num_layers; ++i) {
|
|
svc_params_.max_quantizers[i] = config_->rc_max_quantizer;
|
|
svc_params_.min_quantizers[i] = config_->rc_min_quantizer;
|
|
}
|
|
config_->ss_number_layers = num_spatial_layers_;
|
|
if (ExplicitlyConfiguredSpatialLayers()) {
|
|
for (int i = 0; i < num_spatial_layers_; ++i) {
|
|
const auto& layer = codec_.spatialLayers[i];
|
|
RTC_CHECK_GT(layer.width, 0);
|
|
const int scale_factor = codec_.width / layer.width;
|
|
RTC_DCHECK_GT(scale_factor, 0);
|
|
|
|
// Ensure scaler factor is integer.
|
|
if (scale_factor * layer.width != codec_.width) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
|
|
// Ensure scale factor is the same in both dimensions.
|
|
if (scale_factor * layer.height != codec_.height) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
|
|
// Ensure scale factor is power of two.
|
|
const bool is_pow_of_two = (scale_factor & (scale_factor - 1)) == 0;
|
|
if (!is_pow_of_two) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
|
|
svc_params_.scaling_factor_num[i] = 1;
|
|
svc_params_.scaling_factor_den[i] = scale_factor;
|
|
|
|
RTC_DCHECK_GT(codec_.spatialLayers[i].maxFramerate, 0);
|
|
RTC_DCHECK_LE(codec_.spatialLayers[i].maxFramerate, codec_.maxFramerate);
|
|
if (i > 0) {
|
|
// Frame rate of high spatial layer is supposed to be equal or higher
|
|
// than frame rate of low spatial layer.
|
|
RTC_DCHECK_GE(codec_.spatialLayers[i].maxFramerate,
|
|
codec_.spatialLayers[i - 1].maxFramerate);
|
|
}
|
|
}
|
|
} else {
|
|
int scaling_factor_num = 256;
|
|
for (int i = num_spatial_layers_ - 1; i >= 0; --i) {
|
|
// 1:2 scaling in each dimension.
|
|
svc_params_.scaling_factor_num[i] = scaling_factor_num;
|
|
svc_params_.scaling_factor_den[i] = 256;
|
|
}
|
|
}
|
|
|
|
SvcRateAllocator init_allocator(codec_);
|
|
current_bitrate_allocation_ = init_allocator.GetAllocation(
|
|
inst->startBitrate * 1000, inst->maxFramerate);
|
|
if (!SetSvcRates(current_bitrate_allocation_)) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
|
|
const vpx_codec_err_t rv = vpx_codec_enc_init(
|
|
encoder_, vpx_codec_vp9_cx(), config_,
|
|
config_->g_bit_depth == VPX_BITS_8 ? 0 : VPX_CODEC_USE_HIGHBITDEPTH);
|
|
if (rv != VPX_CODEC_OK) {
|
|
RTC_LOG(LS_ERROR) << "Init error: " << vpx_codec_err_to_string(rv);
|
|
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
|
|
}
|
|
vpx_codec_control(encoder_, VP8E_SET_CPUUSED, cpu_speed_);
|
|
vpx_codec_control(encoder_, VP8E_SET_MAX_INTRA_BITRATE_PCT,
|
|
rc_max_intra_target_);
|
|
vpx_codec_control(encoder_, VP9E_SET_AQ_MODE,
|
|
inst->VP9().adaptiveQpMode ? 3 : 0);
|
|
|
|
vpx_codec_control(encoder_, VP9E_SET_FRAME_PARALLEL_DECODING, 0);
|
|
vpx_codec_control(encoder_, VP9E_SET_SVC_GF_TEMPORAL_REF, 0);
|
|
|
|
if (is_svc_) {
|
|
vpx_codec_control(encoder_, VP9E_SET_SVC, 1);
|
|
vpx_codec_control(encoder_, VP9E_SET_SVC_PARAMETERS, &svc_params_);
|
|
}
|
|
|
|
if (num_spatial_layers_ > 1) {
|
|
switch (inter_layer_pred_) {
|
|
case InterLayerPredMode::kOn:
|
|
vpx_codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 0);
|
|
break;
|
|
case InterLayerPredMode::kOff:
|
|
vpx_codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 1);
|
|
break;
|
|
case InterLayerPredMode::kOnKeyPic:
|
|
vpx_codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 2);
|
|
break;
|
|
default:
|
|
RTC_NOTREACHED();
|
|
}
|
|
|
|
// Configure encoder to drop entire superframe whenever it needs to drop
|
|
// a layer. This mode is prefered over per-layer dropping which causes
|
|
// quality flickering and is not compatible with RTP non-flexible mode.
|
|
vpx_svc_frame_drop_t svc_drop_frame;
|
|
memset(&svc_drop_frame, 0, sizeof(svc_drop_frame));
|
|
svc_drop_frame.framedrop_mode =
|
|
full_superframe_drop_ ? FULL_SUPERFRAME_DROP : CONSTRAINED_LAYER_DROP;
|
|
svc_drop_frame.max_consec_drop = std::numeric_limits<int>::max();
|
|
for (size_t i = 0; i < num_spatial_layers_; ++i) {
|
|
svc_drop_frame.framedrop_thresh[i] = config_->rc_dropframe_thresh;
|
|
}
|
|
vpx_codec_control(encoder_, VP9E_SET_SVC_FRAME_DROP_LAYER, &svc_drop_frame);
|
|
}
|
|
|
|
// Register callback for getting each spatial layer.
|
|
vpx_codec_priv_output_cx_pkt_cb_pair_t cbp = {
|
|
VP9EncoderImpl::EncoderOutputCodedPacketCallback,
|
|
reinterpret_cast<void*>(this)};
|
|
vpx_codec_control(encoder_, VP9E_REGISTER_CX_CALLBACK,
|
|
reinterpret_cast<void*>(&cbp));
|
|
|
|
// Control function to set the number of column tiles in encoding a frame, in
|
|
// log2 unit: e.g., 0 = 1 tile column, 1 = 2 tile columns, 2 = 4 tile columns.
|
|
// The number tile columns will be capped by the encoder based on image size
|
|
// (minimum width of tile column is 256 pixels, maximum is 4096).
|
|
vpx_codec_control(encoder_, VP9E_SET_TILE_COLUMNS, (config_->g_threads >> 1));
|
|
|
|
// Turn on row-based multithreading.
|
|
vpx_codec_control(encoder_, VP9E_SET_ROW_MT, 1);
|
|
|
|
#if !defined(WEBRTC_ARCH_ARM) && !defined(WEBRTC_ARCH_ARM64) && \
|
|
!defined(ANDROID)
|
|
// Do not enable the denoiser on ARM since optimization is pending.
|
|
// Denoiser is on by default on other platforms.
|
|
vpx_codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY,
|
|
inst->VP9().denoisingOn ? 1 : 0);
|
|
#endif
|
|
|
|
if (codec_.mode == VideoCodecMode::kScreensharing) {
|
|
// Adjust internal parameters to screen content.
|
|
vpx_codec_control(encoder_, VP9E_SET_TUNE_CONTENT, 1);
|
|
}
|
|
// Enable encoder skip of static/low content blocks.
|
|
vpx_codec_control(encoder_, VP8E_SET_STATIC_THRESHOLD, 1);
|
|
inited_ = true;
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
|
|
uint32_t VP9EncoderImpl::MaxIntraTarget(uint32_t optimal_buffer_size) {
|
|
// Set max to the optimal buffer level (normalized by target BR),
|
|
// and scaled by a scale_par.
|
|
// Max target size = scale_par * optimal_buffer_size * targetBR[Kbps].
|
|
// This value is presented in percentage of perFrameBw:
|
|
// perFrameBw = targetBR[Kbps] * 1000 / framerate.
|
|
// The target in % is as follows:
|
|
float scale_par = 0.5;
|
|
uint32_t target_pct =
|
|
optimal_buffer_size * scale_par * codec_.maxFramerate / 10;
|
|
// Don't go below 3 times the per frame bandwidth.
|
|
const uint32_t min_intra_size = 300;
|
|
return (target_pct < min_intra_size) ? min_intra_size : target_pct;
|
|
}
|
|
|
|
int VP9EncoderImpl::Encode(const VideoFrame& input_image,
|
|
const CodecSpecificInfo* codec_specific_info,
|
|
const std::vector<FrameType>* frame_types) {
|
|
if (!inited_) {
|
|
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
|
|
}
|
|
if (encoded_complete_callback_ == nullptr) {
|
|
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
|
|
}
|
|
if (num_active_spatial_layers_ == 0) {
|
|
// All spatial layers are disabled, return without encoding anything.
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
|
|
// We only support one stream at the moment.
|
|
if (frame_types && !frame_types->empty()) {
|
|
if ((*frame_types)[0] == kVideoFrameKey) {
|
|
force_key_frame_ = true;
|
|
}
|
|
}
|
|
|
|
if (pics_since_key_ + 1 ==
|
|
static_cast<size_t>(codec_.VP9()->keyFrameInterval)) {
|
|
force_key_frame_ = true;
|
|
}
|
|
|
|
vpx_svc_layer_id_t layer_id = {0};
|
|
if (!force_key_frame_) {
|
|
const size_t gof_idx = (pics_since_key_ + 1) % gof_.num_frames_in_gof;
|
|
layer_id.temporal_layer_id = gof_.temporal_idx[gof_idx];
|
|
|
|
if (VideoCodecMode::kScreensharing == codec_.mode) {
|
|
const uint32_t frame_timestamp_ms =
|
|
1000 * input_image.timestamp() / kVideoPayloadTypeFrequency;
|
|
|
|
for (uint8_t sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) {
|
|
if (framerate_controller_[sl_idx].DropFrame(frame_timestamp_ms)) {
|
|
++layer_id.spatial_layer_id;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
RTC_DCHECK_LE(layer_id.spatial_layer_id, num_active_spatial_layers_);
|
|
if (layer_id.spatial_layer_id >= num_active_spatial_layers_) {
|
|
// Drop entire picture.
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
}
|
|
|
|
for (int sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) {
|
|
layer_id.temporal_layer_id_per_spatial[sl_idx] = layer_id.temporal_layer_id;
|
|
}
|
|
|
|
vpx_codec_control(encoder_, VP9E_SET_SVC_LAYER_ID, &layer_id);
|
|
|
|
if (requested_bitrate_allocation_) {
|
|
bool more_layers_requested = MoreLayersEnabled(
|
|
*requested_bitrate_allocation_, current_bitrate_allocation_);
|
|
bool less_layers_requested = MoreLayersEnabled(
|
|
current_bitrate_allocation_, *requested_bitrate_allocation_);
|
|
// In SVC can enable new layers only if all lower layers are encoded and at
|
|
// the base temporal layer.
|
|
// This will delay rate allocation change until the next frame on the base
|
|
// spatial layer.
|
|
// In KSVC or simulcast modes KF will be generated for a new layer, so can
|
|
// update allocation any time.
|
|
bool can_upswitch =
|
|
inter_layer_pred_ != InterLayerPredMode::kOn ||
|
|
(layer_id.spatial_layer_id == 0 && layer_id.temporal_layer_id == 0);
|
|
if (!more_layers_requested || can_upswitch) {
|
|
current_bitrate_allocation_ = *requested_bitrate_allocation_;
|
|
requested_bitrate_allocation_ = absl::nullopt;
|
|
if (!SetSvcRates(current_bitrate_allocation_)) {
|
|
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
|
}
|
|
if (less_layers_requested || more_layers_requested) {
|
|
ss_info_needed_ = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (vpx_codec_enc_config_set(encoder_, config_)) {
|
|
return WEBRTC_VIDEO_CODEC_ERROR;
|
|
}
|
|
|
|
RTC_DCHECK_EQ(input_image.width(), raw_->d_w);
|
|
RTC_DCHECK_EQ(input_image.height(), raw_->d_h);
|
|
|
|
// Set input image for use in the callback.
|
|
// This was necessary since you need some information from input_image.
|
|
// You can save only the necessary information (such as timestamp) instead of
|
|
// doing this.
|
|
input_image_ = &input_image;
|
|
|
|
// Keep reference to buffer until encode completes.
|
|
rtc::scoped_refptr<I420BufferInterface> i420_buffer;
|
|
rtc::scoped_refptr<I010BufferInterface> i010_buffer;
|
|
switch (profile_) {
|
|
case VP9Profile::kProfile0: {
|
|
i420_buffer = input_image.video_frame_buffer()->ToI420();
|
|
// Image in vpx_image_t format.
|
|
// Input image is const. VPX's raw image is not defined as const.
|
|
raw_->planes[VPX_PLANE_Y] = const_cast<uint8_t*>(i420_buffer->DataY());
|
|
raw_->planes[VPX_PLANE_U] = const_cast<uint8_t*>(i420_buffer->DataU());
|
|
raw_->planes[VPX_PLANE_V] = const_cast<uint8_t*>(i420_buffer->DataV());
|
|
raw_->stride[VPX_PLANE_Y] = i420_buffer->StrideY();
|
|
raw_->stride[VPX_PLANE_U] = i420_buffer->StrideU();
|
|
raw_->stride[VPX_PLANE_V] = i420_buffer->StrideV();
|
|
break;
|
|
}
|
|
case VP9Profile::kProfile2: {
|
|
// We can inject kI010 frames directly for encode. All other formats
|
|
// should be converted to it.
|
|
switch (input_image.video_frame_buffer()->type()) {
|
|
case VideoFrameBuffer::Type::kI010: {
|
|
i010_buffer = input_image.video_frame_buffer()->GetI010();
|
|
break;
|
|
}
|
|
default: {
|
|
i010_buffer =
|
|
I010Buffer::Copy(*input_image.video_frame_buffer()->ToI420());
|
|
}
|
|
}
|
|
raw_->planes[VPX_PLANE_Y] = const_cast<uint8_t*>(
|
|
reinterpret_cast<const uint8_t*>(i010_buffer->DataY()));
|
|
raw_->planes[VPX_PLANE_U] = const_cast<uint8_t*>(
|
|
reinterpret_cast<const uint8_t*>(i010_buffer->DataU()));
|
|
raw_->planes[VPX_PLANE_V] = const_cast<uint8_t*>(
|
|
reinterpret_cast<const uint8_t*>(i010_buffer->DataV()));
|
|
raw_->stride[VPX_PLANE_Y] = i010_buffer->StrideY() * 2;
|
|
raw_->stride[VPX_PLANE_U] = i010_buffer->StrideU() * 2;
|
|
raw_->stride[VPX_PLANE_V] = i010_buffer->StrideV() * 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
vpx_enc_frame_flags_t flags = 0;
|
|
if (force_key_frame_) {
|
|
flags = VPX_EFLAG_FORCE_KF;
|
|
}
|
|
|
|
if (external_ref_control_) {
|
|
vpx_svc_ref_frame_config_t ref_config =
|
|
SetReferences(force_key_frame_, layer_id.spatial_layer_id);
|
|
|
|
if (VideoCodecMode::kScreensharing == codec_.mode) {
|
|
for (uint8_t sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) {
|
|
ref_config.duration[sl_idx] = static_cast<int64_t>(
|
|
90000 / framerate_controller_[sl_idx].GetTargetRate());
|
|
}
|
|
}
|
|
|
|
vpx_codec_control(encoder_, VP9E_SET_SVC_REF_FRAME_CONFIG, &ref_config);
|
|
}
|
|
|
|
first_frame_in_picture_ = true;
|
|
|
|
// TODO(ssilkin): Frame duration should be specified per spatial layer
|
|
// since their frame rate can be different. For now calculate frame duration
|
|
// based on target frame rate of the highest spatial layer, which frame rate
|
|
// is supposed to be equal or higher than frame rate of low spatial layers.
|
|
// Also, timestamp should represent actual time passed since previous frame
|
|
// (not 'expected' time). Then rate controller can drain buffer more
|
|
// accurately.
|
|
RTC_DCHECK_GE(framerate_controller_.size(), num_active_spatial_layers_);
|
|
float target_framerate_fps =
|
|
(codec_.mode == VideoCodecMode::kScreensharing)
|
|
? framerate_controller_[num_active_spatial_layers_ - 1]
|
|
.GetTargetRate()
|
|
: codec_.maxFramerate;
|
|
uint32_t duration = static_cast<uint32_t>(90000 / target_framerate_fps);
|
|
const vpx_codec_err_t rv = vpx_codec_encode(encoder_, raw_, timestamp_,
|
|
duration, flags, VPX_DL_REALTIME);
|
|
if (rv != VPX_CODEC_OK) {
|
|
RTC_LOG(LS_ERROR) << "Encoding error: " << vpx_codec_err_to_string(rv)
|
|
<< "\n"
|
|
<< "Details: " << vpx_codec_error(encoder_) << "\n"
|
|
<< vpx_codec_error_detail(encoder_);
|
|
return WEBRTC_VIDEO_CODEC_ERROR;
|
|
}
|
|
timestamp_ += duration;
|
|
|
|
if (!full_superframe_drop_) {
|
|
const bool end_of_picture = true;
|
|
DeliverBufferedFrame(end_of_picture);
|
|
}
|
|
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
|
|
void VP9EncoderImpl::PopulateCodecSpecific(CodecSpecificInfo* codec_specific,
|
|
absl::optional<int>* spatial_idx,
|
|
const vpx_codec_cx_pkt& pkt,
|
|
uint32_t timestamp) {
|
|
RTC_CHECK(codec_specific != nullptr);
|
|
codec_specific->codecType = kVideoCodecVP9;
|
|
CodecSpecificInfoVP9* vp9_info = &(codec_specific->codecSpecific.VP9);
|
|
|
|
vp9_info->first_frame_in_picture = first_frame_in_picture_;
|
|
vp9_info->flexible_mode = is_flexible_mode_;
|
|
vp9_info->ss_data_available =
|
|
(pkt.data.frame.flags & VPX_FRAME_IS_KEY) ? true : false;
|
|
|
|
if (pkt.data.frame.flags & VPX_FRAME_IS_KEY) {
|
|
pics_since_key_ = 0;
|
|
} else if (first_frame_in_picture_) {
|
|
++pics_since_key_;
|
|
}
|
|
|
|
vpx_svc_layer_id_t layer_id = {0};
|
|
vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id);
|
|
|
|
// Can't have keyframe with non-zero temporal layer.
|
|
RTC_DCHECK(pics_since_key_ != 0 || layer_id.temporal_layer_id == 0);
|
|
|
|
if (ss_info_needed_ && layer_id.temporal_layer_id == 0 &&
|
|
layer_id.spatial_layer_id == 0) {
|
|
// Force SS info after the layers configuration has changed.
|
|
vp9_info->ss_data_available = true;
|
|
ss_info_needed_ = false;
|
|
}
|
|
|
|
RTC_CHECK_GT(num_temporal_layers_, 0);
|
|
RTC_CHECK_GT(num_active_spatial_layers_, 0);
|
|
if (num_temporal_layers_ == 1) {
|
|
RTC_CHECK_EQ(layer_id.temporal_layer_id, 0);
|
|
vp9_info->temporal_idx = kNoTemporalIdx;
|
|
} else {
|
|
vp9_info->temporal_idx = layer_id.temporal_layer_id;
|
|
}
|
|
if (num_active_spatial_layers_ == 1) {
|
|
RTC_CHECK_EQ(layer_id.spatial_layer_id, 0);
|
|
*spatial_idx = absl::nullopt;
|
|
} else {
|
|
*spatial_idx = layer_id.spatial_layer_id;
|
|
}
|
|
if (layer_id.spatial_layer_id != 0) {
|
|
vp9_info->ss_data_available = false;
|
|
}
|
|
|
|
// TODO(asapersson): this info has to be obtained from the encoder.
|
|
vp9_info->temporal_up_switch = false;
|
|
|
|
const bool is_key_pic = (pics_since_key_ == 0);
|
|
const bool is_inter_layer_pred_allowed =
|
|
(inter_layer_pred_ == InterLayerPredMode::kOn ||
|
|
(inter_layer_pred_ == InterLayerPredMode::kOnKeyPic && is_key_pic));
|
|
|
|
// Always set inter_layer_predicted to true on high layer frame if inter-layer
|
|
// prediction (ILP) is allowed even if encoder didn't actually use it.
|
|
// Setting inter_layer_predicted to false would allow receiver to decode high
|
|
// layer frame without decoding low layer frame. If that would happen (e.g.
|
|
// if low layer frame is lost) then receiver won't be able to decode next high
|
|
// layer frame which uses ILP.
|
|
vp9_info->inter_layer_predicted =
|
|
first_frame_in_picture_ ? false : is_inter_layer_pred_allowed;
|
|
|
|
// Mark all low spatial layer frames as references (not just frames of
|
|
// active low spatial layers) if inter-layer prediction is enabled since
|
|
// these frames are indirect references of high spatial layer, which can
|
|
// later be enabled without key frame.
|
|
vp9_info->non_ref_for_inter_layer_pred =
|
|
!is_inter_layer_pred_allowed ||
|
|
layer_id.spatial_layer_id + 1 == num_spatial_layers_;
|
|
|
|
// Always populate this, so that the packetizer can properly set the marker
|
|
// bit.
|
|
vp9_info->num_spatial_layers = num_active_spatial_layers_;
|
|
|
|
vp9_info->num_ref_pics = 0;
|
|
FillReferenceIndices(pkt, pics_since_key_, vp9_info->inter_layer_predicted,
|
|
vp9_info);
|
|
if (vp9_info->flexible_mode) {
|
|
vp9_info->gof_idx = kNoGofIdx;
|
|
} else {
|
|
vp9_info->gof_idx =
|
|
static_cast<uint8_t>(pics_since_key_ % gof_.num_frames_in_gof);
|
|
vp9_info->temporal_up_switch = gof_.temporal_up_switch[vp9_info->gof_idx];
|
|
RTC_DCHECK(vp9_info->num_ref_pics == gof_.num_ref_pics[vp9_info->gof_idx] ||
|
|
vp9_info->num_ref_pics == 0);
|
|
}
|
|
|
|
vp9_info->inter_pic_predicted = (!is_key_pic && vp9_info->num_ref_pics > 0);
|
|
|
|
if (vp9_info->ss_data_available) {
|
|
vp9_info->spatial_layer_resolution_present = true;
|
|
for (size_t i = 0; i < num_active_spatial_layers_; ++i) {
|
|
vp9_info->width[i] = codec_.width * svc_params_.scaling_factor_num[i] /
|
|
svc_params_.scaling_factor_den[i];
|
|
vp9_info->height[i] = codec_.height * svc_params_.scaling_factor_num[i] /
|
|
svc_params_.scaling_factor_den[i];
|
|
}
|
|
if (vp9_info->flexible_mode) {
|
|
vp9_info->gof.num_frames_in_gof = 0;
|
|
} else {
|
|
vp9_info->gof.CopyGofInfoVP9(gof_);
|
|
}
|
|
}
|
|
|
|
first_frame_in_picture_ = false;
|
|
}
|
|
|
|
void VP9EncoderImpl::FillReferenceIndices(const vpx_codec_cx_pkt& pkt,
|
|
const size_t pic_num,
|
|
const bool inter_layer_predicted,
|
|
CodecSpecificInfoVP9* vp9_info) {
|
|
vpx_svc_layer_id_t layer_id = {0};
|
|
vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id);
|
|
|
|
const bool is_key_frame =
|
|
(pkt.data.frame.flags & VPX_FRAME_IS_KEY) ? true : false;
|
|
|
|
std::vector<RefFrameBuffer> ref_buf_list;
|
|
|
|
if (is_svc_) {
|
|
vpx_svc_ref_frame_config_t enc_layer_conf = {{0}};
|
|
vpx_codec_control(encoder_, VP9E_GET_SVC_REF_FRAME_CONFIG, &enc_layer_conf);
|
|
|
|
if (enc_layer_conf.reference_last[layer_id.spatial_layer_id]) {
|
|
const size_t fb_idx =
|
|
enc_layer_conf.lst_fb_idx[layer_id.spatial_layer_id];
|
|
RTC_DCHECK(ref_buf_.find(fb_idx) != ref_buf_.end());
|
|
if (std::find(ref_buf_list.begin(), ref_buf_list.end(),
|
|
ref_buf_.at(fb_idx)) == ref_buf_list.end()) {
|
|
ref_buf_list.push_back(ref_buf_.at(fb_idx));
|
|
}
|
|
}
|
|
|
|
if (enc_layer_conf.reference_alt_ref[layer_id.spatial_layer_id]) {
|
|
const size_t fb_idx =
|
|
enc_layer_conf.alt_fb_idx[layer_id.spatial_layer_id];
|
|
RTC_DCHECK(ref_buf_.find(fb_idx) != ref_buf_.end());
|
|
if (std::find(ref_buf_list.begin(), ref_buf_list.end(),
|
|
ref_buf_.at(fb_idx)) == ref_buf_list.end()) {
|
|
ref_buf_list.push_back(ref_buf_.at(fb_idx));
|
|
}
|
|
}
|
|
|
|
if (enc_layer_conf.reference_golden[layer_id.spatial_layer_id]) {
|
|
const size_t fb_idx =
|
|
enc_layer_conf.gld_fb_idx[layer_id.spatial_layer_id];
|
|
RTC_DCHECK(ref_buf_.find(fb_idx) != ref_buf_.end());
|
|
if (std::find(ref_buf_list.begin(), ref_buf_list.end(),
|
|
ref_buf_.at(fb_idx)) == ref_buf_list.end()) {
|
|
ref_buf_list.push_back(ref_buf_.at(fb_idx));
|
|
}
|
|
}
|
|
} else if (!is_key_frame) {
|
|
RTC_DCHECK_EQ(num_spatial_layers_, 1);
|
|
RTC_DCHECK_EQ(num_temporal_layers_, 1);
|
|
// In non-SVC mode encoder doesn't provide reference list. Assume each frame
|
|
// refers previous one, which is stored in buffer 0.
|
|
ref_buf_list.push_back(ref_buf_.at(0));
|
|
}
|
|
|
|
size_t max_ref_temporal_layer_id = 0;
|
|
|
|
std::vector<size_t> ref_pid_list;
|
|
|
|
vp9_info->num_ref_pics = 0;
|
|
for (const RefFrameBuffer& ref_buf : ref_buf_list) {
|
|
RTC_DCHECK_LE(ref_buf.pic_num, pic_num);
|
|
if (ref_buf.pic_num < pic_num) {
|
|
if (inter_layer_pred_ != InterLayerPredMode::kOn) {
|
|
// RTP spec limits temporal prediction to the same spatial layer.
|
|
// It is safe to ignore this requirement if inter-layer prediction is
|
|
// enabled for all frames when all base frames are relayed to receiver.
|
|
RTC_DCHECK_EQ(ref_buf.spatial_layer_id, layer_id.spatial_layer_id);
|
|
}
|
|
RTC_DCHECK_LE(ref_buf.temporal_layer_id, layer_id.temporal_layer_id);
|
|
|
|
// Encoder may reference several spatial layers on the same previous
|
|
// frame in case if some spatial layers are skipped on the current frame.
|
|
// We shouldn't put duplicate references as it may break some old
|
|
// clients and isn't RTP compatible.
|
|
if (std::find(ref_pid_list.begin(), ref_pid_list.end(),
|
|
ref_buf.pic_num) != ref_pid_list.end()) {
|
|
continue;
|
|
}
|
|
ref_pid_list.push_back(ref_buf.pic_num);
|
|
|
|
const size_t p_diff = pic_num - ref_buf.pic_num;
|
|
RTC_DCHECK_LE(p_diff, 127UL);
|
|
|
|
vp9_info->p_diff[vp9_info->num_ref_pics] = static_cast<uint8_t>(p_diff);
|
|
++vp9_info->num_ref_pics;
|
|
|
|
max_ref_temporal_layer_id =
|
|
std::max(max_ref_temporal_layer_id, ref_buf.temporal_layer_id);
|
|
} else {
|
|
RTC_DCHECK(inter_layer_predicted);
|
|
// RTP spec only allows to use previous spatial layer for inter-layer
|
|
// prediction.
|
|
RTC_DCHECK_EQ(ref_buf.spatial_layer_id + 1, layer_id.spatial_layer_id);
|
|
}
|
|
}
|
|
|
|
vp9_info->temporal_up_switch =
|
|
(max_ref_temporal_layer_id <
|
|
static_cast<size_t>(layer_id.temporal_layer_id));
|
|
}
|
|
|
|
void VP9EncoderImpl::UpdateReferenceBuffers(const vpx_codec_cx_pkt& pkt,
|
|
const size_t pic_num) {
|
|
vpx_svc_layer_id_t layer_id = {0};
|
|
vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id);
|
|
|
|
const bool is_key_frame =
|
|
(pkt.data.frame.flags & VPX_FRAME_IS_KEY) ? true : false;
|
|
|
|
RefFrameBuffer frame_buf(pic_num, layer_id.spatial_layer_id,
|
|
layer_id.temporal_layer_id);
|
|
|
|
if (is_key_frame && layer_id.spatial_layer_id == 0) {
|
|
// Key frame updates all ref buffers.
|
|
for (size_t i = 0; i < kNumVp9Buffers; ++i) {
|
|
ref_buf_[i] = frame_buf;
|
|
}
|
|
} else if (is_svc_) {
|
|
vpx_svc_ref_frame_config_t enc_layer_conf = {{0}};
|
|
vpx_codec_control(encoder_, VP9E_GET_SVC_REF_FRAME_CONFIG, &enc_layer_conf);
|
|
|
|
for (size_t i = 0; i < kNumVp9Buffers; ++i) {
|
|
if (enc_layer_conf.update_buffer_slot[layer_id.spatial_layer_id] &
|
|
(1 << i)) {
|
|
ref_buf_[i] = frame_buf;
|
|
}
|
|
}
|
|
} else {
|
|
RTC_DCHECK_EQ(num_spatial_layers_, 1);
|
|
RTC_DCHECK_EQ(num_temporal_layers_, 1);
|
|
// In non-svc mode encoder doesn't provide reference list. Assume each frame
|
|
// is reference and stored in buffer 0.
|
|
ref_buf_[0] = frame_buf;
|
|
}
|
|
}
|
|
|
|
vpx_svc_ref_frame_config_t VP9EncoderImpl::SetReferences(
|
|
bool is_key_pic,
|
|
size_t first_active_spatial_layer_id) {
|
|
// kRefBufIdx, kUpdBufIdx need to be updated to support longer GOFs.
|
|
RTC_DCHECK_LE(gof_.num_frames_in_gof, 4);
|
|
|
|
vpx_svc_ref_frame_config_t ref_config;
|
|
memset(&ref_config, 0, sizeof(ref_config));
|
|
|
|
const size_t num_temporal_refs = std::max(1, num_temporal_layers_ - 1);
|
|
const bool is_inter_layer_pred_allowed =
|
|
inter_layer_pred_ == InterLayerPredMode::kOn ||
|
|
(inter_layer_pred_ == InterLayerPredMode::kOnKeyPic && is_key_pic);
|
|
absl::optional<int> last_updated_buf_idx;
|
|
|
|
// Put temporal reference to LAST and spatial reference to GOLDEN. Update
|
|
// frame buffer (i.e. store encoded frame) if current frame is a temporal
|
|
// reference (i.e. it belongs to a low temporal layer) or it is a spatial
|
|
// reference. In later case, always store spatial reference in the last
|
|
// reference frame buffer.
|
|
// For the case of 3 temporal and 3 spatial layers we need 6 frame buffers
|
|
// for temporal references plus 1 buffer for spatial reference. 7 buffers
|
|
// in total.
|
|
|
|
for (size_t sl_idx = first_active_spatial_layer_id;
|
|
sl_idx < num_active_spatial_layers_; ++sl_idx) {
|
|
const size_t curr_pic_num = is_key_pic ? 0 : pics_since_key_ + 1;
|
|
const size_t gof_idx = curr_pic_num % gof_.num_frames_in_gof;
|
|
|
|
if (!is_key_pic) {
|
|
// Set up temporal reference.
|
|
const int buf_idx = sl_idx * num_temporal_refs + kRefBufIdx[gof_idx];
|
|
|
|
// Last reference frame buffer is reserved for spatial reference. It is
|
|
// not supposed to be used for temporal prediction.
|
|
RTC_DCHECK_LT(buf_idx, kNumVp9Buffers - 1);
|
|
|
|
// Sanity check that reference picture number is smaller than current
|
|
// picture number.
|
|
RTC_DCHECK_LT(ref_buf_[buf_idx].pic_num, curr_pic_num);
|
|
const size_t pid_diff = curr_pic_num - ref_buf_[buf_idx].pic_num;
|
|
// Incorrect spatial layer may be in the buffer due to a key-frame.
|
|
const bool same_spatial_layer =
|
|
ref_buf_[buf_idx].spatial_layer_id == sl_idx;
|
|
bool correct_pid = false;
|
|
if (different_framerates_used_) {
|
|
correct_pid = pid_diff < kMaxAllowedPidDIff;
|
|
} else {
|
|
// Below code assumes single temporal referecence.
|
|
RTC_DCHECK_EQ(gof_.num_ref_pics[gof_idx], 1);
|
|
correct_pid = pid_diff == gof_.pid_diff[gof_idx][0];
|
|
}
|
|
|
|
if (same_spatial_layer && correct_pid) {
|
|
ref_config.lst_fb_idx[sl_idx] = buf_idx;
|
|
ref_config.reference_last[sl_idx] = 1;
|
|
} else {
|
|
// This reference doesn't match with one specified by GOF. This can
|
|
// only happen if spatial layer is enabled dynamically without key
|
|
// frame. Spatial prediction is supposed to be enabled in this case.
|
|
RTC_DCHECK(is_inter_layer_pred_allowed &&
|
|
sl_idx > first_active_spatial_layer_id);
|
|
}
|
|
}
|
|
|
|
if (is_inter_layer_pred_allowed && sl_idx > first_active_spatial_layer_id) {
|
|
// Set up spatial reference.
|
|
RTC_DCHECK(last_updated_buf_idx);
|
|
ref_config.gld_fb_idx[sl_idx] = *last_updated_buf_idx;
|
|
ref_config.reference_golden[sl_idx] = 1;
|
|
} else {
|
|
RTC_DCHECK(ref_config.reference_last[sl_idx] != 0 ||
|
|
sl_idx == first_active_spatial_layer_id ||
|
|
inter_layer_pred_ == InterLayerPredMode::kOff);
|
|
}
|
|
|
|
last_updated_buf_idx.reset();
|
|
|
|
if (gof_.temporal_idx[gof_idx] < num_temporal_layers_ - 1 ||
|
|
num_temporal_layers_ == 1) {
|
|
last_updated_buf_idx = sl_idx * num_temporal_refs + kUpdBufIdx[gof_idx];
|
|
|
|
// Ensure last frame buffer is not used for temporal prediction (it is
|
|
// reserved for spatial reference).
|
|
RTC_DCHECK_LT(*last_updated_buf_idx, kNumVp9Buffers - 1);
|
|
} else if (is_inter_layer_pred_allowed) {
|
|
last_updated_buf_idx = kNumVp9Buffers - 1;
|
|
}
|
|
|
|
if (last_updated_buf_idx) {
|
|
ref_config.update_buffer_slot[sl_idx] = 1 << *last_updated_buf_idx;
|
|
}
|
|
}
|
|
|
|
return ref_config;
|
|
}
|
|
|
|
int VP9EncoderImpl::GetEncodedLayerFrame(const vpx_codec_cx_pkt* pkt) {
|
|
RTC_DCHECK_EQ(pkt->kind, VPX_CODEC_CX_FRAME_PKT);
|
|
|
|
if (pkt->data.frame.sz == 0) {
|
|
// Ignore dropped frame.
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
|
|
vpx_svc_layer_id_t layer_id = {0};
|
|
vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id);
|
|
|
|
if (!full_superframe_drop_) {
|
|
// Deliver buffered low spatial layer frame.
|
|
const bool end_of_picture = false;
|
|
DeliverBufferedFrame(end_of_picture);
|
|
}
|
|
|
|
if (pkt->data.frame.sz > encoded_image_.capacity()) {
|
|
delete[] encoded_image_.buffer();
|
|
encoded_image_.set_buffer(new uint8_t[pkt->data.frame.sz],
|
|
pkt->data.frame.sz);
|
|
}
|
|
memcpy(encoded_image_.data(), pkt->data.frame.buf, pkt->data.frame.sz);
|
|
encoded_image_.set_size(pkt->data.frame.sz);
|
|
|
|
const bool is_key_frame =
|
|
(pkt->data.frame.flags & VPX_FRAME_IS_KEY) ? true : false;
|
|
// Ensure encoder issued key frame on request.
|
|
RTC_DCHECK(is_key_frame || !force_key_frame_);
|
|
|
|
// Check if encoded frame is a key frame.
|
|
encoded_image_._frameType = kVideoFrameDelta;
|
|
if (is_key_frame) {
|
|
encoded_image_._frameType = kVideoFrameKey;
|
|
force_key_frame_ = false;
|
|
}
|
|
RTC_DCHECK_LE(encoded_image_.size(), encoded_image_.capacity());
|
|
|
|
memset(&codec_specific_, 0, sizeof(codec_specific_));
|
|
absl::optional<int> spatial_index;
|
|
PopulateCodecSpecific(&codec_specific_, &spatial_index, *pkt,
|
|
input_image_->timestamp());
|
|
encoded_image_.SetSpatialIndex(spatial_index);
|
|
|
|
UpdateReferenceBuffers(*pkt, pics_since_key_);
|
|
|
|
TRACE_COUNTER1("webrtc", "EncodedFrameSize", encoded_image_.size());
|
|
encoded_image_.SetTimestamp(input_image_->timestamp());
|
|
encoded_image_.capture_time_ms_ = input_image_->render_time_ms();
|
|
encoded_image_.rotation_ = input_image_->rotation();
|
|
encoded_image_.content_type_ = (codec_.mode == VideoCodecMode::kScreensharing)
|
|
? VideoContentType::SCREENSHARE
|
|
: VideoContentType::UNSPECIFIED;
|
|
encoded_image_._encodedHeight =
|
|
pkt->data.frame.height[layer_id.spatial_layer_id];
|
|
encoded_image_._encodedWidth =
|
|
pkt->data.frame.width[layer_id.spatial_layer_id];
|
|
encoded_image_.timing_.flags = VideoSendTiming::kInvalid;
|
|
int qp = -1;
|
|
vpx_codec_control(encoder_, VP8E_GET_LAST_QUANTIZER, &qp);
|
|
encoded_image_.qp_ = qp;
|
|
encoded_image_.SetColorSpace(input_image_->color_space());
|
|
|
|
if (full_superframe_drop_) {
|
|
const bool end_of_picture = encoded_image_.SpatialIndex().value_or(0) + 1 ==
|
|
num_active_spatial_layers_;
|
|
DeliverBufferedFrame(end_of_picture);
|
|
}
|
|
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
|
|
void VP9EncoderImpl::DeliverBufferedFrame(bool end_of_picture) {
|
|
if (encoded_image_.size() > 0) {
|
|
codec_specific_.codecSpecific.VP9.end_of_picture = end_of_picture;
|
|
|
|
// No data partitioning in VP9, so 1 partition only.
|
|
int part_idx = 0;
|
|
RTPFragmentationHeader frag_info;
|
|
frag_info.VerifyAndAllocateFragmentationHeader(1);
|
|
frag_info.fragmentationOffset[part_idx] = 0;
|
|
frag_info.fragmentationLength[part_idx] = encoded_image_.size();
|
|
frag_info.fragmentationPlType[part_idx] = 0;
|
|
frag_info.fragmentationTimeDiff[part_idx] = 0;
|
|
|
|
encoded_complete_callback_->OnEncodedImage(encoded_image_, &codec_specific_,
|
|
&frag_info);
|
|
encoded_image_.set_size(0);
|
|
|
|
if (codec_.mode == VideoCodecMode::kScreensharing) {
|
|
const uint8_t spatial_idx = encoded_image_.SpatialIndex().value_or(0);
|
|
const uint32_t frame_timestamp_ms =
|
|
1000 * encoded_image_.Timestamp() / kVideoPayloadTypeFrequency;
|
|
framerate_controller_[spatial_idx].AddFrame(frame_timestamp_ms);
|
|
}
|
|
}
|
|
}
|
|
|
|
int VP9EncoderImpl::RegisterEncodeCompleteCallback(
|
|
EncodedImageCallback* callback) {
|
|
encoded_complete_callback_ = callback;
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
|
|
VideoEncoder::EncoderInfo VP9EncoderImpl::GetEncoderInfo() const {
|
|
EncoderInfo info;
|
|
info.supports_native_handle = false;
|
|
info.implementation_name = "libvpx";
|
|
info.scaling_settings = VideoEncoder::ScalingSettings::kOff;
|
|
info.has_trusted_rate_controller = trusted_rate_controller_;
|
|
info.is_hardware_accelerated = false;
|
|
info.has_internal_source = false;
|
|
for (size_t si = 0; si < num_spatial_layers_; ++si) {
|
|
info.fps_allocation[si].clear();
|
|
if (!codec_.spatialLayers[si].active) {
|
|
continue;
|
|
}
|
|
// This spatial layer may already use a fraction of the total frame rate.
|
|
const float sl_fps_fraction =
|
|
codec_.spatialLayers[si].maxFramerate / codec_.maxFramerate;
|
|
for (size_t ti = 0; ti < num_temporal_layers_; ++ti) {
|
|
const uint32_t decimator =
|
|
num_temporal_layers_ <= 1 ? 1 : config_->ts_rate_decimator[ti];
|
|
RTC_DCHECK_GT(decimator, 0);
|
|
info.fps_allocation[si].push_back(rtc::saturated_cast<uint8_t>(
|
|
EncoderInfo::kMaxFramerateFraction * (sl_fps_fraction / decimator)));
|
|
}
|
|
}
|
|
return info;
|
|
}
|
|
|
|
VP9DecoderImpl::VP9DecoderImpl()
|
|
: decode_complete_callback_(nullptr),
|
|
inited_(false),
|
|
decoder_(nullptr),
|
|
key_frame_required_(true) {}
|
|
|
|
VP9DecoderImpl::~VP9DecoderImpl() {
|
|
inited_ = true; // in order to do the actual release
|
|
Release();
|
|
int num_buffers_in_use = frame_buffer_pool_.GetNumBuffersInUse();
|
|
if (num_buffers_in_use > 0) {
|
|
// The frame buffers are reference counted and frames are exposed after
|
|
// decoding. There may be valid usage cases where previous frames are still
|
|
// referenced after ~VP9DecoderImpl that is not a leak.
|
|
RTC_LOG(LS_INFO) << num_buffers_in_use << " Vp9FrameBuffers are still "
|
|
<< "referenced during ~VP9DecoderImpl.";
|
|
}
|
|
}
|
|
|
|
int VP9DecoderImpl::InitDecode(const VideoCodec* inst, int number_of_cores) {
|
|
int ret_val = Release();
|
|
if (ret_val < 0) {
|
|
return ret_val;
|
|
}
|
|
|
|
if (decoder_ == nullptr) {
|
|
decoder_ = new vpx_codec_ctx_t;
|
|
}
|
|
vpx_codec_dec_cfg_t cfg;
|
|
memset(&cfg, 0, sizeof(cfg));
|
|
|
|
// We want to use multithreading when decoding high resolution videos. But,
|
|
// since we don't know resolution of input stream at this stage, we always
|
|
// enable it.
|
|
cfg.threads = std::min(number_of_cores, kMaxNumTiles4kVideo);
|
|
|
|
vpx_codec_flags_t flags = 0;
|
|
if (vpx_codec_dec_init(decoder_, vpx_codec_vp9_dx(), &cfg, flags)) {
|
|
return WEBRTC_VIDEO_CODEC_MEMORY;
|
|
}
|
|
|
|
if (!frame_buffer_pool_.InitializeVpxUsePool(decoder_)) {
|
|
return WEBRTC_VIDEO_CODEC_MEMORY;
|
|
}
|
|
|
|
inited_ = true;
|
|
// Always start with a complete key frame.
|
|
key_frame_required_ = true;
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
|
|
int VP9DecoderImpl::Decode(const EncodedImage& input_image,
|
|
bool missing_frames,
|
|
const CodecSpecificInfo* codec_specific_info,
|
|
int64_t /*render_time_ms*/) {
|
|
if (!inited_) {
|
|
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
|
|
}
|
|
if (decode_complete_callback_ == nullptr) {
|
|
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
|
|
}
|
|
// Always start with a complete key frame.
|
|
if (key_frame_required_) {
|
|
if (input_image._frameType != kVideoFrameKey)
|
|
return WEBRTC_VIDEO_CODEC_ERROR;
|
|
// We have a key frame - is it complete?
|
|
if (input_image._completeFrame) {
|
|
key_frame_required_ = false;
|
|
} else {
|
|
return WEBRTC_VIDEO_CODEC_ERROR;
|
|
}
|
|
}
|
|
vpx_codec_iter_t iter = nullptr;
|
|
vpx_image_t* img;
|
|
const uint8_t* buffer = input_image.data();
|
|
if (input_image.size() == 0) {
|
|
buffer = nullptr; // Triggers full frame concealment.
|
|
}
|
|
// During decode libvpx may get and release buffers from |frame_buffer_pool_|.
|
|
// In practice libvpx keeps a few (~3-4) buffers alive at a time.
|
|
if (vpx_codec_decode(decoder_, buffer,
|
|
static_cast<unsigned int>(input_image.size()), 0,
|
|
VPX_DL_REALTIME)) {
|
|
return WEBRTC_VIDEO_CODEC_ERROR;
|
|
}
|
|
// |img->fb_priv| contains the image data, a reference counted Vp9FrameBuffer.
|
|
// It may be released by libvpx during future vpx_codec_decode or
|
|
// vpx_codec_destroy calls.
|
|
img = vpx_codec_get_frame(decoder_, &iter);
|
|
int qp;
|
|
vpx_codec_err_t vpx_ret =
|
|
vpx_codec_control(decoder_, VPXD_GET_LAST_QUANTIZER, &qp);
|
|
RTC_DCHECK_EQ(vpx_ret, VPX_CODEC_OK);
|
|
int ret = ReturnFrame(img, input_image.Timestamp(), input_image.ntp_time_ms_,
|
|
qp, input_image.ColorSpace());
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
|
|
int VP9DecoderImpl::ReturnFrame(
|
|
const vpx_image_t* img,
|
|
uint32_t timestamp,
|
|
int64_t ntp_time_ms,
|
|
int qp,
|
|
const webrtc::ColorSpace* explicit_color_space) {
|
|
if (img == nullptr) {
|
|
// Decoder OK and nullptr image => No show frame.
|
|
return WEBRTC_VIDEO_CODEC_NO_OUTPUT;
|
|
}
|
|
|
|
// This buffer contains all of |img|'s image data, a reference counted
|
|
// Vp9FrameBuffer. (libvpx is done with the buffers after a few
|
|
// vpx_codec_decode calls or vpx_codec_destroy).
|
|
Vp9FrameBufferPool::Vp9FrameBuffer* img_buffer =
|
|
static_cast<Vp9FrameBufferPool::Vp9FrameBuffer*>(img->fb_priv);
|
|
|
|
// The buffer can be used directly by the VideoFrame (without copy) by
|
|
// using a Wrapped*Buffer.
|
|
rtc::scoped_refptr<VideoFrameBuffer> img_wrapped_buffer;
|
|
switch (img->bit_depth) {
|
|
case 8:
|
|
img_wrapped_buffer = WrapI420Buffer(
|
|
img->d_w, img->d_h, img->planes[VPX_PLANE_Y],
|
|
img->stride[VPX_PLANE_Y], img->planes[VPX_PLANE_U],
|
|
img->stride[VPX_PLANE_U], img->planes[VPX_PLANE_V],
|
|
img->stride[VPX_PLANE_V],
|
|
// WrappedI420Buffer's mechanism for allowing the release of its frame
|
|
// buffer is through a callback function. This is where we should
|
|
// release |img_buffer|.
|
|
rtc::KeepRefUntilDone(img_buffer));
|
|
break;
|
|
case 10:
|
|
img_wrapped_buffer = WrapI010Buffer(
|
|
img->d_w, img->d_h,
|
|
reinterpret_cast<const uint16_t*>(img->planes[VPX_PLANE_Y]),
|
|
img->stride[VPX_PLANE_Y] / 2,
|
|
reinterpret_cast<const uint16_t*>(img->planes[VPX_PLANE_U]),
|
|
img->stride[VPX_PLANE_U] / 2,
|
|
reinterpret_cast<const uint16_t*>(img->planes[VPX_PLANE_V]),
|
|
img->stride[VPX_PLANE_V] / 2, rtc::KeepRefUntilDone(img_buffer));
|
|
break;
|
|
default:
|
|
RTC_NOTREACHED();
|
|
return WEBRTC_VIDEO_CODEC_NO_OUTPUT;
|
|
}
|
|
|
|
auto builder = VideoFrame::Builder()
|
|
.set_video_frame_buffer(img_wrapped_buffer)
|
|
.set_timestamp_ms(0)
|
|
.set_timestamp_rtp(timestamp)
|
|
.set_ntp_time_ms(ntp_time_ms)
|
|
.set_rotation(webrtc::kVideoRotation_0);
|
|
if (explicit_color_space) {
|
|
builder.set_color_space(*explicit_color_space);
|
|
} else {
|
|
builder.set_color_space(
|
|
ExtractVP9ColorSpace(img->cs, img->range, img->bit_depth));
|
|
}
|
|
|
|
VideoFrame decoded_image = builder.build();
|
|
|
|
decode_complete_callback_->Decoded(decoded_image, absl::nullopt, qp);
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
|
|
int VP9DecoderImpl::RegisterDecodeCompleteCallback(
|
|
DecodedImageCallback* callback) {
|
|
decode_complete_callback_ = callback;
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
|
|
int VP9DecoderImpl::Release() {
|
|
int ret_val = WEBRTC_VIDEO_CODEC_OK;
|
|
|
|
if (decoder_ != nullptr) {
|
|
if (inited_) {
|
|
// When a codec is destroyed libvpx will release any buffers of
|
|
// |frame_buffer_pool_| it is currently using.
|
|
if (vpx_codec_destroy(decoder_)) {
|
|
ret_val = WEBRTC_VIDEO_CODEC_MEMORY;
|
|
}
|
|
}
|
|
delete decoder_;
|
|
decoder_ = nullptr;
|
|
}
|
|
// Releases buffers from the pool. Any buffers not in use are deleted. Buffers
|
|
// still referenced externally are deleted once fully released, not returning
|
|
// to the pool.
|
|
frame_buffer_pool_.ClearPool();
|
|
inited_ = false;
|
|
return ret_val;
|
|
}
|
|
|
|
const char* VP9DecoderImpl::ImplementationName() const {
|
|
return "libvpx";
|
|
}
|
|
|
|
} // namespace webrtc
|
|
|
|
#endif // RTC_ENABLE_VP9
|