webrtc/test/fuzzers/neteq_rtp_fuzzer.cc
Henrik Lundin df2a4654a0 Improve neteq_rtp_fuzzer
This change lets the fuzzer modify the first few bytes of the RTP
payload. One of the benefits is that it can cover the RED header
splitter functionality.

The CL also fixes an issue found while running the fuzzer locally.

Bug: webrtc:11640
Change-Id: I7ca73676440897a14a0aaca796f70d381e016575
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/185819
Commit-Queue: Henrik Lundin <henrik.lundin@webrtc.org>
Reviewed-by: Sam Zackrisson <saza@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#32242}
2020-09-29 20:24:07 +00:00

184 lines
5.8 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <cmath>
#include <cstring>
#include <memory>
#include <vector>
#include "api/array_view.h"
#include "api/audio_codecs/builtin_audio_decoder_factory.h"
#include "modules/audio_coding/codecs/pcm16b/audio_encoder_pcm16b.h"
#include "modules/audio_coding/neteq/tools/audio_checksum.h"
#include "modules/audio_coding/neteq/tools/encode_neteq_input.h"
#include "modules/audio_coding/neteq/tools/neteq_test.h"
#include "modules/rtp_rtcp/source/byte_io.h"
namespace webrtc {
namespace test {
namespace {
constexpr int kPayloadType = 95;
class SineGenerator : public EncodeNetEqInput::Generator {
public:
explicit SineGenerator(int sample_rate_hz)
: sample_rate_hz_(sample_rate_hz) {}
rtc::ArrayView<const int16_t> Generate(size_t num_samples) override {
if (samples_.size() < num_samples) {
samples_.resize(num_samples);
}
rtc::ArrayView<int16_t> output(samples_.data(), num_samples);
for (auto& x : output) {
x = static_cast<int16_t>(2000.0 * std::sin(phase_));
phase_ += 2 * kPi * kFreqHz / sample_rate_hz_;
}
return output;
}
private:
static constexpr int kFreqHz = 300; // The sinewave frequency.
const int sample_rate_hz_;
const double kPi = std::acos(-1);
std::vector<int16_t> samples_;
double phase_ = 0.0;
};
class FuzzRtpInput : public NetEqInput {
public:
explicit FuzzRtpInput(rtc::ArrayView<const uint8_t> data) : data_(data) {
AudioEncoderPcm16B::Config config;
config.payload_type = kPayloadType;
config.sample_rate_hz = 32000;
std::unique_ptr<AudioEncoder> encoder(new AudioEncoderPcm16B(config));
std::unique_ptr<EncodeNetEqInput::Generator> generator(
new SineGenerator(config.sample_rate_hz));
input_.reset(new EncodeNetEqInput(std::move(generator), std::move(encoder),
std::numeric_limits<int64_t>::max()));
packet_ = input_->PopPacket();
FuzzHeader();
MaybeFuzzPayload();
}
absl::optional<int64_t> NextPacketTime() const override {
return packet_->time_ms;
}
absl::optional<int64_t> NextOutputEventTime() const override {
return input_->NextOutputEventTime();
}
std::unique_ptr<PacketData> PopPacket() override {
RTC_DCHECK(packet_);
std::unique_ptr<PacketData> packet_to_return = std::move(packet_);
packet_ = input_->PopPacket();
FuzzHeader();
MaybeFuzzPayload();
return packet_to_return;
}
void AdvanceOutputEvent() override { return input_->AdvanceOutputEvent(); }
bool ended() const override { return ended_; }
absl::optional<RTPHeader> NextHeader() const override {
RTC_DCHECK(packet_);
return packet_->header;
}
private:
void FuzzHeader() {
constexpr size_t kNumBytesToFuzz = 11;
if (data_ix_ + kNumBytesToFuzz > data_.size()) {
ended_ = true;
return;
}
RTC_DCHECK(packet_);
const size_t start_ix = data_ix_;
packet_->header.payloadType =
ByteReader<uint8_t>::ReadLittleEndian(&data_[data_ix_]);
packet_->header.payloadType &= 0x7F;
data_ix_ += sizeof(uint8_t);
packet_->header.sequenceNumber =
ByteReader<uint16_t>::ReadLittleEndian(&data_[data_ix_]);
data_ix_ += sizeof(uint16_t);
packet_->header.timestamp =
ByteReader<uint32_t>::ReadLittleEndian(&data_[data_ix_]);
data_ix_ += sizeof(uint32_t);
packet_->header.ssrc =
ByteReader<uint32_t>::ReadLittleEndian(&data_[data_ix_]);
data_ix_ += sizeof(uint32_t);
RTC_CHECK_EQ(data_ix_ - start_ix, kNumBytesToFuzz);
}
void MaybeFuzzPayload() {
// Read one byte of fuzz data to determine how many payload bytes to fuzz.
if (data_ix_ + 1 > data_.size()) {
ended_ = true;
return;
}
size_t bytes_to_fuzz = data_[data_ix_++];
// Restrict number of bytes to fuzz to 16; a reasonably low number enough to
// cover a few RED headers. Also don't write outside the payload length.
bytes_to_fuzz = std::min(bytes_to_fuzz % 16, packet_->payload.size());
if (bytes_to_fuzz == 0)
return;
if (data_ix_ + bytes_to_fuzz > data_.size()) {
ended_ = true;
return;
}
std::memcpy(packet_->payload.data(), &data_[data_ix_], bytes_to_fuzz);
data_ix_ += bytes_to_fuzz;
}
bool ended_ = false;
rtc::ArrayView<const uint8_t> data_;
size_t data_ix_ = 0;
std::unique_ptr<EncodeNetEqInput> input_;
std::unique_ptr<PacketData> packet_;
};
} // namespace
void FuzzOneInputTest(const uint8_t* data, size_t size) {
std::unique_ptr<FuzzRtpInput> input(
new FuzzRtpInput(rtc::ArrayView<const uint8_t>(data, size)));
std::unique_ptr<AudioChecksum> output(new AudioChecksum);
NetEqTest::Callbacks callbacks;
NetEq::Config config;
auto codecs = NetEqTest::StandardDecoderMap();
// kPayloadType is the payload type that will be used for encoding. Verify
// that it is included in the standard decoder map, and that it points to the
// expected decoder type.
const auto it = codecs.find(kPayloadType);
RTC_CHECK(it != codecs.end());
RTC_CHECK(it->second == SdpAudioFormat("L16", 32000, 1));
NetEqTest test(config, CreateBuiltinAudioDecoderFactory(), codecs,
/*text_log=*/nullptr, /*neteq_factory=*/nullptr,
std::move(input), std::move(output), callbacks);
test.Run();
}
} // namespace test
void FuzzOneInput(const uint8_t* data, size_t size) {
if (size > 70000) {
return;
}
test::FuzzOneInputTest(data, size);
}
} // namespace webrtc