mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 22:00:47 +01:00

Start using RobustThoughputEstimator in DelayBasedBwe test in preparation for making it default. Experiments has not showed significant metric changes. However, simulations has showed that RobustThroughputEstimator better follow the actually receive rate better. Especially during bursts of sent packets. Code is also simpler. Bug: webrtc:13402 chromium:1411666 Change-Id: I83cfa1fc15486982b18cc22fbd0752ff59c1c1b4 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/317600 Reviewed-by: Björn Terelius <terelius@webrtc.org> Commit-Queue: Per Kjellander <perkj@webrtc.org> Cr-Commit-Position: refs/heads/main@{#40644}
254 lines
9.6 KiB
C++
254 lines
9.6 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/congestion_controller/goog_cc/delay_based_bwe.h"
|
|
|
|
#include <string>
|
|
|
|
#include "api/transport/network_types.h"
|
|
#include "modules/congestion_controller/goog_cc/acknowledged_bitrate_estimator.h"
|
|
#include "modules/congestion_controller/goog_cc/delay_based_bwe_unittest_helper.h"
|
|
#include "system_wrappers/include/clock.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
constexpr int kNumProbesCluster0 = 5;
|
|
constexpr int kNumProbesCluster1 = 8;
|
|
const PacedPacketInfo kPacingInfo0(0, kNumProbesCluster0, 2000);
|
|
const PacedPacketInfo kPacingInfo1(1, kNumProbesCluster1, 4000);
|
|
constexpr float kTargetUtilizationFraction = 0.95f;
|
|
} // namespace
|
|
|
|
TEST_F(DelayBasedBweTest, ProbeDetection) {
|
|
int64_t now_ms = clock_.TimeInMilliseconds();
|
|
|
|
// First burst sent at 8 * 1000 / 10 = 800 kbps.
|
|
for (int i = 0; i < kNumProbesCluster0; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(10);
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, now_ms, 1000, kPacingInfo0);
|
|
}
|
|
EXPECT_TRUE(bitrate_observer_.updated());
|
|
|
|
// Second burst sent at 8 * 1000 / 5 = 1600 kbps.
|
|
for (int i = 0; i < kNumProbesCluster1; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, now_ms, 1000, kPacingInfo1);
|
|
}
|
|
|
|
EXPECT_TRUE(bitrate_observer_.updated());
|
|
EXPECT_GT(bitrate_observer_.latest_bitrate(), 1500000u);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, ProbeDetectionNonPacedPackets) {
|
|
int64_t now_ms = clock_.TimeInMilliseconds();
|
|
// First burst sent at 8 * 1000 / 10 = 800 kbps, but with every other packet
|
|
// not being paced which could mess things up.
|
|
for (int i = 0; i < kNumProbesCluster0; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, now_ms, 1000, kPacingInfo0);
|
|
// Non-paced packet, arriving 5 ms after.
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
IncomingFeedback(now_ms, now_ms, 100, PacedPacketInfo());
|
|
}
|
|
|
|
EXPECT_TRUE(bitrate_observer_.updated());
|
|
EXPECT_GT(bitrate_observer_.latest_bitrate(), 800000u);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, ProbeDetectionFasterArrival) {
|
|
int64_t now_ms = clock_.TimeInMilliseconds();
|
|
// First burst sent at 8 * 1000 / 10 = 800 kbps.
|
|
// Arriving at 8 * 1000 / 5 = 1600 kbps.
|
|
int64_t send_time_ms = 0;
|
|
for (int i = 0; i < kNumProbesCluster0; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(1);
|
|
send_time_ms += 10;
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, send_time_ms, 1000, kPacingInfo0);
|
|
}
|
|
|
|
EXPECT_FALSE(bitrate_observer_.updated());
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrival) {
|
|
int64_t now_ms = clock_.TimeInMilliseconds();
|
|
// First burst sent at 8 * 1000 / 5 = 1600 kbps.
|
|
// Arriving at 8 * 1000 / 7 = 1142 kbps.
|
|
// Since the receive rate is significantly below the send rate, we expect to
|
|
// use 95% of the estimated capacity.
|
|
int64_t send_time_ms = 0;
|
|
for (int i = 0; i < kNumProbesCluster1; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(7);
|
|
send_time_ms += 5;
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, send_time_ms, 1000, kPacingInfo1);
|
|
}
|
|
|
|
EXPECT_TRUE(bitrate_observer_.updated());
|
|
EXPECT_NEAR(bitrate_observer_.latest_bitrate(),
|
|
kTargetUtilizationFraction * 1140000u, 10000u);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrivalHighBitrate) {
|
|
int64_t now_ms = clock_.TimeInMilliseconds();
|
|
// Burst sent at 8 * 1000 / 1 = 8000 kbps.
|
|
// Arriving at 8 * 1000 / 2 = 4000 kbps.
|
|
// Since the receive rate is significantly below the send rate, we expect to
|
|
// use 95% of the estimated capacity.
|
|
int64_t send_time_ms = 0;
|
|
for (int i = 0; i < kNumProbesCluster1; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(2);
|
|
send_time_ms += 1;
|
|
now_ms = clock_.TimeInMilliseconds();
|
|
IncomingFeedback(now_ms, send_time_ms, 1000, kPacingInfo1);
|
|
}
|
|
|
|
EXPECT_TRUE(bitrate_observer_.updated());
|
|
EXPECT_NEAR(bitrate_observer_.latest_bitrate(),
|
|
kTargetUtilizationFraction * 4000000u, 10000u);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, GetExpectedBwePeriodMs) {
|
|
auto default_interval = bitrate_estimator_->GetExpectedBwePeriod();
|
|
EXPECT_GT(default_interval.ms(), 0);
|
|
CapacityDropTestHelper(1, true, 533, 0);
|
|
auto interval = bitrate_estimator_->GetExpectedBwePeriod();
|
|
EXPECT_GT(interval.ms(), 0);
|
|
EXPECT_NE(interval.ms(), default_interval.ms());
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, InitialBehavior) {
|
|
InitialBehaviorTestHelper(730000);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, InitializeResult) {
|
|
DelayBasedBwe::Result result;
|
|
EXPECT_EQ(result.delay_detector_state, BandwidthUsage::kBwNormal);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, RateIncreaseReordering) {
|
|
RateIncreaseReorderingTestHelper(730000);
|
|
}
|
|
TEST_F(DelayBasedBweTest, RateIncreaseRtpTimestamps) {
|
|
RateIncreaseRtpTimestampsTestHelper(617);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, CapacityDropOneStream) {
|
|
CapacityDropTestHelper(1, false, 500, 0);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, CapacityDropPosOffsetChange) {
|
|
CapacityDropTestHelper(1, false, 867, 30000);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, CapacityDropNegOffsetChange) {
|
|
CapacityDropTestHelper(1, false, 933, -30000);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, CapacityDropOneStreamWrap) {
|
|
CapacityDropTestHelper(1, true, 533, 0);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, TestTimestampGrouping) {
|
|
TestTimestampGroupingTestHelper();
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, TestShortTimeoutAndWrap) {
|
|
// Simulate a client leaving and rejoining the call after 35 seconds. This
|
|
// will make abs send time wrap, so if streams aren't timed out properly
|
|
// the next 30 seconds of packets will be out of order.
|
|
TestWrappingHelper(35);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, TestLongTimeoutAndWrap) {
|
|
// Simulate a client leaving and rejoining the call after some multiple of
|
|
// 64 seconds later. This will cause a zero difference in abs send times due
|
|
// to the wrap, but a big difference in arrival time, if streams aren't
|
|
// properly timed out.
|
|
TestWrappingHelper(10 * 64);
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, TestInitialOveruse) {
|
|
const DataRate kStartBitrate = DataRate::KilobitsPerSec(300);
|
|
const DataRate kInitialCapacity = DataRate::KilobitsPerSec(200);
|
|
const uint32_t kDummySsrc = 0;
|
|
// High FPS to ensure that we send a lot of packets in a short time.
|
|
const int kFps = 90;
|
|
|
|
stream_generator_->AddStream(new test::RtpStream(kFps, kStartBitrate.bps()));
|
|
stream_generator_->set_capacity_bps(kInitialCapacity.bps());
|
|
|
|
// Needed to initialize the AimdRateControl.
|
|
bitrate_estimator_->SetStartBitrate(kStartBitrate);
|
|
|
|
// Produce 40 frames (in 1/3 second) and give them to the estimator.
|
|
int64_t bitrate_bps = kStartBitrate.bps();
|
|
bool seen_overuse = false;
|
|
for (int i = 0; i < 40; ++i) {
|
|
bool overuse = GenerateAndProcessFrame(kDummySsrc, bitrate_bps);
|
|
if (overuse) {
|
|
EXPECT_TRUE(bitrate_observer_.updated());
|
|
EXPECT_LE(bitrate_observer_.latest_bitrate(), kInitialCapacity.bps());
|
|
EXPECT_GT(bitrate_observer_.latest_bitrate(),
|
|
0.8 * kInitialCapacity.bps());
|
|
bitrate_bps = bitrate_observer_.latest_bitrate();
|
|
seen_overuse = true;
|
|
break;
|
|
} else if (bitrate_observer_.updated()) {
|
|
bitrate_bps = bitrate_observer_.latest_bitrate();
|
|
bitrate_observer_.Reset();
|
|
}
|
|
}
|
|
EXPECT_TRUE(seen_overuse);
|
|
EXPECT_LE(bitrate_observer_.latest_bitrate(), kInitialCapacity.bps());
|
|
EXPECT_GT(bitrate_observer_.latest_bitrate(), 0.8 * kInitialCapacity.bps());
|
|
}
|
|
|
|
TEST_F(DelayBasedBweTest, TestTimestampPrecisionHandling) {
|
|
// This test does some basic checks to make sure that timestamps with higher
|
|
// than millisecond precision are handled properly and do not cause any
|
|
// problems in the estimator. Specifically, previously reported in
|
|
// webrtc:14023 and described in more details there, the rounding to the
|
|
// nearest milliseconds caused discrepancy in the accumulated delay. This lead
|
|
// to false-positive overuse detection.
|
|
// Technical details of the test:
|
|
// Send times(ms): 0.000, 9.725, 20.000, 29.725, 40.000, 49.725, ...
|
|
// Recv times(ms): 0.500, 10.000, 20.500, 30.000, 40.500, 50.000, ...
|
|
// Send deltas(ms): 9.750, 10.250, 9.750, 10.250, 9.750, ...
|
|
// Recv deltas(ms): 9.500, 10.500, 9.500, 10.500, 9.500, ...
|
|
// There is no delay building up between the send times and the receive times,
|
|
// therefore this case should never lead to an overuse detection. However, if
|
|
// the time deltas were accidentally rounded to the nearest milliseconds, then
|
|
// all the send deltas would be equal to 10ms while some recv deltas would
|
|
// round up to 11ms which would lead in a false illusion of delay build up.
|
|
uint32_t last_bitrate = bitrate_observer_.latest_bitrate();
|
|
for (int i = 0; i < 1000; ++i) {
|
|
clock_.AdvanceTimeMicroseconds(500);
|
|
IncomingFeedback(clock_.CurrentTime(),
|
|
clock_.CurrentTime() - TimeDelta::Micros(500), 1000,
|
|
PacedPacketInfo());
|
|
clock_.AdvanceTimeMicroseconds(9500);
|
|
IncomingFeedback(clock_.CurrentTime(),
|
|
clock_.CurrentTime() - TimeDelta::Micros(250), 1000,
|
|
PacedPacketInfo());
|
|
clock_.AdvanceTimeMicroseconds(10000);
|
|
|
|
// The bitrate should never decrease in this test.
|
|
EXPECT_LE(last_bitrate, bitrate_observer_.latest_bitrate());
|
|
last_bitrate = bitrate_observer_.latest_bitrate();
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|