mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 14:20:45 +01:00

Bug: webrtc:12614 Change-Id: Ie710621610fff9f8bb6c7d800419675892d6a70c Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/215680 Commit-Queue: Florent Castelli <orphis@webrtc.org> Reviewed-by: Harald Alvestrand <hta@webrtc.org> Reviewed-by: Victor Boivie <boivie@webrtc.org> Cr-Commit-Position: refs/heads/master@{#33935}
747 lines
33 KiB
C++
747 lines
33 KiB
C++
/*
|
|
* Copyright 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "absl/types/optional.h"
|
|
#include "api/data_channel_interface.h"
|
|
#include "api/dtmf_sender_interface.h"
|
|
#include "api/peer_connection_interface.h"
|
|
#include "api/scoped_refptr.h"
|
|
#include "api/units/time_delta.h"
|
|
#include "pc/test/integration_test_helpers.h"
|
|
#include "pc/test/mock_peer_connection_observers.h"
|
|
#include "rtc_base/fake_clock.h"
|
|
#include "rtc_base/gunit.h"
|
|
#include "rtc_base/ref_counted_object.h"
|
|
#include "rtc_base/virtual_socket_server.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
class DataChannelIntegrationTest : public PeerConnectionIntegrationBaseTest,
|
|
public ::testing::WithParamInterface<
|
|
std::tuple<SdpSemantics, std::string>> {
|
|
protected:
|
|
DataChannelIntegrationTest()
|
|
: PeerConnectionIntegrationBaseTest(std::get<0>(GetParam()),
|
|
std::get<1>(GetParam())) {}
|
|
};
|
|
|
|
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(DataChannelIntegrationTest);
|
|
|
|
// Fake clock must be set before threads are started to prevent race on
|
|
// Set/GetClockForTesting().
|
|
// To achieve that, multiple inheritance is used as a mixin pattern
|
|
// where order of construction is finely controlled.
|
|
// This also ensures peerconnection is closed before switching back to non-fake
|
|
// clock, avoiding other races and DCHECK failures such as in rtp_sender.cc.
|
|
class FakeClockForTest : public rtc::ScopedFakeClock {
|
|
protected:
|
|
FakeClockForTest() {
|
|
// Some things use a time of "0" as a special value, so we need to start out
|
|
// the fake clock at a nonzero time.
|
|
// TODO(deadbeef): Fix this.
|
|
AdvanceTime(webrtc::TimeDelta::Seconds(1));
|
|
}
|
|
|
|
// Explicit handle.
|
|
ScopedFakeClock& FakeClock() { return *this; }
|
|
};
|
|
|
|
// Ensure FakeClockForTest is constructed first (see class for rationale).
|
|
class DataChannelIntegrationTestWithFakeClock
|
|
: public FakeClockForTest,
|
|
public DataChannelIntegrationTest {};
|
|
|
|
class DataChannelIntegrationTestPlanB
|
|
: public PeerConnectionIntegrationBaseTest {
|
|
protected:
|
|
DataChannelIntegrationTestPlanB()
|
|
: PeerConnectionIntegrationBaseTest(SdpSemantics::kPlanB) {}
|
|
};
|
|
|
|
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(
|
|
DataChannelIntegrationTestWithFakeClock);
|
|
|
|
class DataChannelIntegrationTestUnifiedPlan
|
|
: public PeerConnectionIntegrationBaseTest {
|
|
protected:
|
|
DataChannelIntegrationTestUnifiedPlan()
|
|
: PeerConnectionIntegrationBaseTest(SdpSemantics::kUnifiedPlan) {}
|
|
};
|
|
|
|
#ifdef WEBRTC_HAVE_SCTP
|
|
|
|
// This test causes a PeerConnection to enter Disconnected state, and
|
|
// sends data on a DataChannel while disconnected.
|
|
// The data should be surfaced when the connection reestablishes.
|
|
TEST_P(DataChannelIntegrationTest, DataChannelWhileDisconnected) {
|
|
CreatePeerConnectionWrappers();
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
|
|
std::string data1 = "hello first";
|
|
caller()->data_channel()->Send(DataBuffer(data1));
|
|
EXPECT_EQ_WAIT(data1, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
// Cause a network outage
|
|
virtual_socket_server()->set_drop_probability(1.0);
|
|
EXPECT_EQ_WAIT(PeerConnectionInterface::kIceConnectionDisconnected,
|
|
caller()->standardized_ice_connection_state(),
|
|
kDefaultTimeout);
|
|
std::string data2 = "hello second";
|
|
caller()->data_channel()->Send(DataBuffer(data2));
|
|
// Remove the network outage. The connection should reestablish.
|
|
virtual_socket_server()->set_drop_probability(0.0);
|
|
EXPECT_EQ_WAIT(data2, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
|
|
// This test causes a PeerConnection to enter Disconnected state,
|
|
// sends data on a DataChannel while disconnected, and then triggers
|
|
// an ICE restart.
|
|
// The data should be surfaced when the connection reestablishes.
|
|
TEST_P(DataChannelIntegrationTest, DataChannelWhileDisconnectedIceRestart) {
|
|
CreatePeerConnectionWrappers();
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
|
|
std::string data1 = "hello first";
|
|
caller()->data_channel()->Send(DataBuffer(data1));
|
|
EXPECT_EQ_WAIT(data1, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
// Cause a network outage
|
|
virtual_socket_server()->set_drop_probability(1.0);
|
|
ASSERT_EQ_WAIT(PeerConnectionInterface::kIceConnectionDisconnected,
|
|
caller()->standardized_ice_connection_state(),
|
|
kDefaultTimeout);
|
|
std::string data2 = "hello second";
|
|
caller()->data_channel()->Send(DataBuffer(data2));
|
|
|
|
// Trigger an ICE restart. The signaling channel is not affected by
|
|
// the network outage.
|
|
caller()->SetOfferAnswerOptions(IceRestartOfferAnswerOptions());
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Remove the network outage. The connection should reestablish.
|
|
virtual_socket_server()->set_drop_probability(0.0);
|
|
EXPECT_EQ_WAIT(data2, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
|
|
// This test sets up a call between two parties with audio, video and an SCTP
|
|
// data channel.
|
|
TEST_P(DataChannelIntegrationTest, EndToEndCallWithSctpDataChannel) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
// Expect that data channel created on caller side will show up for callee as
|
|
// well.
|
|
caller()->CreateDataChannel();
|
|
caller()->AddAudioVideoTracks();
|
|
callee()->AddAudioVideoTracks();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Ensure the existence of the SCTP data channel didn't impede audio/video.
|
|
MediaExpectations media_expectations;
|
|
media_expectations.ExpectBidirectionalAudioAndVideo();
|
|
ASSERT_TRUE(ExpectNewFrames(media_expectations));
|
|
// Caller data channel should already exist (it created one). Callee data
|
|
// channel may not exist yet, since negotiation happens in-band, not in SDP.
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
// Ensure data can be sent in both directions.
|
|
std::string data = "hello world";
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
|
|
// This test sets up a call between two parties with an SCTP
|
|
// data channel only, and sends messages of various sizes.
|
|
TEST_P(DataChannelIntegrationTest,
|
|
EndToEndCallWithSctpDataChannelVariousSizes) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
// Expect that data channel created on caller side will show up for callee as
|
|
// well.
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Caller data channel should already exist (it created one). Callee data
|
|
// channel may not exist yet, since negotiation happens in-band, not in SDP.
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
for (int message_size = 1; message_size < 100000; message_size *= 2) {
|
|
std::string data(message_size, 'a');
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
// Specifically probe the area around the MTU size.
|
|
for (int message_size = 1100; message_size < 1300; message_size += 1) {
|
|
std::string data(message_size, 'a');
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
}
|
|
|
|
// This test sets up a call between two parties with an SCTP
|
|
// data channel only, and sends empty messages
|
|
TEST_P(DataChannelIntegrationTest,
|
|
EndToEndCallWithSctpDataChannelEmptyMessages) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
// Expect that data channel created on caller side will show up for callee as
|
|
// well.
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Caller data channel should already exist (it created one). Callee data
|
|
// channel may not exist yet, since negotiation happens in-band, not in SDP.
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
// Ensure data can be sent in both directions.
|
|
// Sending empty string data
|
|
std::string data = "";
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(1u, callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
EXPECT_TRUE(callee()->data_observer()->last_message().empty());
|
|
EXPECT_FALSE(callee()->data_observer()->messages().back().binary);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(1u, caller()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
EXPECT_TRUE(caller()->data_observer()->last_message().empty());
|
|
EXPECT_FALSE(caller()->data_observer()->messages().back().binary);
|
|
|
|
// Sending empty binary data
|
|
rtc::CopyOnWriteBuffer empty_buffer;
|
|
caller()->data_channel()->Send(DataBuffer(empty_buffer, true));
|
|
EXPECT_EQ_WAIT(2u, callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
EXPECT_TRUE(callee()->data_observer()->last_message().empty());
|
|
EXPECT_TRUE(callee()->data_observer()->messages().back().binary);
|
|
callee()->data_channel()->Send(DataBuffer(empty_buffer, true));
|
|
EXPECT_EQ_WAIT(2u, caller()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
EXPECT_TRUE(caller()->data_observer()->last_message().empty());
|
|
EXPECT_TRUE(caller()->data_observer()->messages().back().binary);
|
|
}
|
|
|
|
TEST_P(DataChannelIntegrationTest,
|
|
EndToEndCallWithSctpDataChannelLowestSafeMtu) {
|
|
// The lowest payload size limit that's tested and found safe for this
|
|
// application. Note that this is not the safe limit under all conditions;
|
|
// in particular, the default is not the largest DTLS signature, and
|
|
// this test does not use TURN.
|
|
const size_t kLowestSafePayloadSizeLimit = 1225;
|
|
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
// Expect that data channel created on caller side will show up for callee as
|
|
// well.
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Caller data channel should already exist (it created one). Callee data
|
|
// channel may not exist yet, since negotiation happens in-band, not in SDP.
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
virtual_socket_server()->set_max_udp_payload(kLowestSafePayloadSizeLimit);
|
|
for (int message_size = 1140; message_size < 1240; message_size += 1) {
|
|
std::string data(message_size, 'a');
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
ASSERT_EQ_WAIT(data, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
ASSERT_EQ_WAIT(data, caller()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
}
|
|
|
|
// This test verifies that lowering the MTU of the connection will cause
|
|
// the datachannel to not transmit reliably.
|
|
// The purpose of this test is to ensure that we know how a too-small MTU
|
|
// error manifests itself.
|
|
TEST_P(DataChannelIntegrationTest, EndToEndCallWithSctpDataChannelHarmfulMtu) {
|
|
// The lowest payload size limit that's tested and found safe for this
|
|
// application in this configuration (see test above).
|
|
const size_t kLowestSafePayloadSizeLimit = 1225;
|
|
// The size of the smallest message that fails to be delivered.
|
|
const size_t kMessageSizeThatIsNotDelivered = 1157;
|
|
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
virtual_socket_server()->set_max_udp_payload(kLowestSafePayloadSizeLimit - 1);
|
|
// Probe for an undelivered or slowly delivered message. The exact
|
|
// size limit seems to be dependent on the message history, so make the
|
|
// code easily able to find the current value.
|
|
bool failure_seen = false;
|
|
for (size_t message_size = 1110; message_size < 1400; message_size++) {
|
|
const size_t message_count =
|
|
callee()->data_observer()->received_message_count();
|
|
const std::string data(message_size, 'a');
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
// Wait a very short time for the message to be delivered.
|
|
// Note: Waiting only 10 ms is too short for Windows bots; they will
|
|
// flakily fail at a random frame.
|
|
WAIT(callee()->data_observer()->received_message_count() > message_count,
|
|
100);
|
|
if (callee()->data_observer()->received_message_count() == message_count) {
|
|
ASSERT_EQ(kMessageSizeThatIsNotDelivered, message_size);
|
|
failure_seen = true;
|
|
break;
|
|
}
|
|
}
|
|
ASSERT_TRUE(failure_seen);
|
|
}
|
|
|
|
// Ensure that when the callee closes an SCTP data channel, the closing
|
|
// procedure results in the data channel being closed for the caller as well.
|
|
TEST_P(DataChannelIntegrationTest, CalleeClosesSctpDataChannel) {
|
|
// Same procedure as above test.
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->AddAudioVideoTracks();
|
|
callee()->AddAudioVideoTracks();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
// Close the data channel on the callee side, and wait for it to reach the
|
|
// "closed" state on both sides.
|
|
callee()->data_channel()->Close();
|
|
|
|
DataChannelInterface::DataState expected_states[] = {
|
|
DataChannelInterface::DataState::kConnecting,
|
|
DataChannelInterface::DataState::kOpen,
|
|
DataChannelInterface::DataState::kClosing,
|
|
DataChannelInterface::DataState::kClosed};
|
|
|
|
EXPECT_EQ_WAIT(DataChannelInterface::DataState::kClosed,
|
|
caller()->data_observer()->state(), kDefaultTimeout);
|
|
EXPECT_THAT(caller()->data_observer()->states(),
|
|
::testing::ElementsAreArray(expected_states));
|
|
|
|
EXPECT_EQ_WAIT(DataChannelInterface::DataState::kClosed,
|
|
callee()->data_observer()->state(), kDefaultTimeout);
|
|
EXPECT_THAT(callee()->data_observer()->states(),
|
|
::testing::ElementsAreArray(expected_states));
|
|
}
|
|
|
|
TEST_P(DataChannelIntegrationTest, SctpDataChannelConfigSentToOtherSide) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
webrtc::DataChannelInit init;
|
|
init.id = 53;
|
|
init.maxRetransmits = 52;
|
|
caller()->CreateDataChannel("data-channel", &init);
|
|
caller()->AddAudioVideoTracks();
|
|
callee()->AddAudioVideoTracks();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
// Since "negotiated" is false, the "id" parameter should be ignored.
|
|
EXPECT_NE(init.id, callee()->data_channel()->id());
|
|
EXPECT_EQ("data-channel", callee()->data_channel()->label());
|
|
EXPECT_EQ(init.maxRetransmits, callee()->data_channel()->maxRetransmits());
|
|
EXPECT_FALSE(callee()->data_channel()->negotiated());
|
|
}
|
|
|
|
// Test usrsctp's ability to process unordered data stream, where data actually
|
|
// arrives out of order using simulated delays. Previously there have been some
|
|
// bugs in this area.
|
|
TEST_P(DataChannelIntegrationTest, StressTestUnorderedSctpDataChannel) {
|
|
// Introduce random network delays.
|
|
// Otherwise it's not a true "unordered" test.
|
|
virtual_socket_server()->set_delay_mean(20);
|
|
virtual_socket_server()->set_delay_stddev(5);
|
|
virtual_socket_server()->UpdateDelayDistribution();
|
|
// Normal procedure, but with unordered data channel config.
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
webrtc::DataChannelInit init;
|
|
init.ordered = false;
|
|
caller()->CreateDataChannel(&init);
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
static constexpr int kNumMessages = 100;
|
|
// Deliberately chosen to be larger than the MTU so messages get fragmented.
|
|
static constexpr size_t kMaxMessageSize = 4096;
|
|
// Create and send random messages.
|
|
std::vector<std::string> sent_messages;
|
|
for (int i = 0; i < kNumMessages; ++i) {
|
|
size_t length =
|
|
(rand() % kMaxMessageSize) + 1; // NOLINT (rand_r instead of rand)
|
|
std::string message;
|
|
ASSERT_TRUE(rtc::CreateRandomString(length, &message));
|
|
caller()->data_channel()->Send(DataBuffer(message));
|
|
callee()->data_channel()->Send(DataBuffer(message));
|
|
sent_messages.push_back(message);
|
|
}
|
|
|
|
// Wait for all messages to be received.
|
|
EXPECT_EQ_WAIT(rtc::checked_cast<size_t>(kNumMessages),
|
|
caller()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
EXPECT_EQ_WAIT(rtc::checked_cast<size_t>(kNumMessages),
|
|
callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
|
|
// Sort and compare to make sure none of the messages were corrupted.
|
|
std::vector<std::string> caller_received_messages;
|
|
absl::c_transform(caller()->data_observer()->messages(),
|
|
std::back_inserter(caller_received_messages),
|
|
[](const auto& a) { return a.data; });
|
|
|
|
std::vector<std::string> callee_received_messages;
|
|
absl::c_transform(callee()->data_observer()->messages(),
|
|
std::back_inserter(callee_received_messages),
|
|
[](const auto& a) { return a.data; });
|
|
|
|
absl::c_sort(sent_messages);
|
|
absl::c_sort(caller_received_messages);
|
|
absl::c_sort(callee_received_messages);
|
|
EXPECT_EQ(sent_messages, caller_received_messages);
|
|
EXPECT_EQ(sent_messages, callee_received_messages);
|
|
}
|
|
|
|
// This test sets up a call between two parties with audio, and video. When
|
|
// audio and video are setup and flowing, an SCTP data channel is negotiated.
|
|
TEST_P(DataChannelIntegrationTest, AddSctpDataChannelInSubsequentOffer) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
// Do initial offer/answer with audio/video.
|
|
caller()->AddAudioVideoTracks();
|
|
callee()->AddAudioVideoTracks();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Create data channel and do new offer and answer.
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Caller data channel should already exist (it created one). Callee data
|
|
// channel may not exist yet, since negotiation happens in-band, not in SDP.
|
|
ASSERT_NE(nullptr, caller()->data_channel());
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
// Ensure data can be sent in both directions.
|
|
std::string data = "hello world";
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
|
|
// Set up a connection initially just using SCTP data channels, later upgrading
|
|
// to audio/video, ensuring frames are received end-to-end. Effectively the
|
|
// inverse of the test above.
|
|
// This was broken in M57; see https://crbug.com/711243
|
|
TEST_P(DataChannelIntegrationTest, SctpDataChannelToAudioVideoUpgrade) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
// Do initial offer/answer with just data channel.
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
// Wait until data can be sent over the data channel.
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
// Do subsequent offer/answer with two-way audio and video. Audio and video
|
|
// should end up bundled on the DTLS/ICE transport already used for data.
|
|
caller()->AddAudioVideoTracks();
|
|
callee()->AddAudioVideoTracks();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
MediaExpectations media_expectations;
|
|
media_expectations.ExpectBidirectionalAudioAndVideo();
|
|
ASSERT_TRUE(ExpectNewFrames(media_expectations));
|
|
}
|
|
|
|
static void MakeSpecCompliantSctpOffer(cricket::SessionDescription* desc) {
|
|
cricket::SctpDataContentDescription* dcd_offer =
|
|
GetFirstSctpDataContentDescription(desc);
|
|
// See https://crbug.com/webrtc/11211 - this function is a no-op
|
|
ASSERT_TRUE(dcd_offer);
|
|
dcd_offer->set_use_sctpmap(false);
|
|
dcd_offer->set_protocol("UDP/DTLS/SCTP");
|
|
}
|
|
|
|
// Test that the data channel works when a spec-compliant SCTP m= section is
|
|
// offered (using "a=sctp-port" instead of "a=sctpmap", and using
|
|
// "UDP/DTLS/SCTP" as the protocol).
|
|
TEST_P(DataChannelIntegrationTest,
|
|
DataChannelWorksWhenSpecCompliantSctpOfferReceived) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->SetGeneratedSdpMunger(MakeSpecCompliantSctpOffer);
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
|
|
// Ensure data can be sent in both directions.
|
|
std::string data = "hello world";
|
|
caller()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
callee()->data_channel()->Send(DataBuffer(data));
|
|
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
}
|
|
|
|
// Test that after closing PeerConnections, they stop sending any packets (ICE,
|
|
// DTLS, RTP...).
|
|
TEST_P(DataChannelIntegrationTest, ClosingConnectionStopsPacketFlow) {
|
|
// Set up audio/video/data, wait for some frames to be received.
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->AddAudioVideoTracks();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
MediaExpectations media_expectations;
|
|
media_expectations.CalleeExpectsSomeAudioAndVideo();
|
|
ASSERT_TRUE(ExpectNewFrames(media_expectations));
|
|
// Close PeerConnections.
|
|
ClosePeerConnections();
|
|
// Pump messages for a second, and ensure no new packets end up sent.
|
|
uint32_t sent_packets_a = virtual_socket_server()->sent_packets();
|
|
WAIT(false, 1000);
|
|
uint32_t sent_packets_b = virtual_socket_server()->sent_packets();
|
|
EXPECT_EQ(sent_packets_a, sent_packets_b);
|
|
}
|
|
|
|
// Test that transport stats are generated by the RTCStatsCollector for a
|
|
// connection that only involves data channels. This is a regression test for
|
|
// crbug.com/826972.
|
|
TEST_P(DataChannelIntegrationTest,
|
|
TransportStatsReportedForDataChannelOnlyConnection) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
|
|
|
|
auto caller_report = caller()->NewGetStats();
|
|
EXPECT_EQ(1u, caller_report->GetStatsOfType<RTCTransportStats>().size());
|
|
auto callee_report = callee()->NewGetStats();
|
|
EXPECT_EQ(1u, callee_report->GetStatsOfType<RTCTransportStats>().size());
|
|
}
|
|
|
|
TEST_P(DataChannelIntegrationTest, QueuedPacketsGetDeliveredInReliableMode) {
|
|
CreatePeerConnectionWrappers();
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
|
|
|
|
caller()->data_channel()->Send(DataBuffer("hello first"));
|
|
ASSERT_EQ_WAIT(1u, callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
// Cause a temporary network outage
|
|
virtual_socket_server()->set_drop_probability(1.0);
|
|
for (int i = 1; i <= 10; i++) {
|
|
caller()->data_channel()->Send(DataBuffer("Sent while blocked"));
|
|
}
|
|
// Nothing should be delivered during outage. Short wait.
|
|
EXPECT_EQ_WAIT(1u, callee()->data_observer()->received_message_count(), 10);
|
|
// Reverse outage
|
|
virtual_socket_server()->set_drop_probability(0.0);
|
|
// All packets should be delivered.
|
|
EXPECT_EQ_WAIT(11u, callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
}
|
|
|
|
TEST_P(DataChannelIntegrationTest, QueuedPacketsGetDeliveredInUnReliableMode) {
|
|
CreatePeerConnectionWrappers();
|
|
ConnectFakeSignaling();
|
|
DataChannelInit init;
|
|
init.maxRetransmits = 0;
|
|
init.ordered = false;
|
|
caller()->CreateDataChannel(&init);
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
|
|
caller()->data_channel()->Send(DataBuffer("hello first"));
|
|
ASSERT_EQ_WAIT(1u, callee()->data_observer()->received_message_count(),
|
|
kDefaultTimeout);
|
|
// Cause a temporary network outage
|
|
virtual_socket_server()->set_drop_probability(1.0);
|
|
for (int i = 1; i <= 10; i++) {
|
|
caller()->data_channel()->Send(DataBuffer("Sent while blocked"));
|
|
}
|
|
// Nothing should be delivered during outage.
|
|
// We do a short wait to verify that delivery count is still 1.
|
|
WAIT(false, 10);
|
|
EXPECT_EQ(1u, callee()->data_observer()->received_message_count());
|
|
// Reverse the network outage.
|
|
virtual_socket_server()->set_drop_probability(0.0);
|
|
// Send a new packet, and wait for it to be delivered.
|
|
caller()->data_channel()->Send(DataBuffer("After block"));
|
|
EXPECT_EQ_WAIT("After block", callee()->data_observer()->last_message(),
|
|
kDefaultTimeout);
|
|
// Some messages should be lost, but first and last message should have
|
|
// been delivered.
|
|
// First, check that the protocol guarantee is preserved.
|
|
EXPECT_GT(11u, callee()->data_observer()->received_message_count());
|
|
EXPECT_LE(2u, callee()->data_observer()->received_message_count());
|
|
// Then, check that observed behavior (lose all messages) has not changed
|
|
EXPECT_EQ(2u, callee()->data_observer()->received_message_count());
|
|
}
|
|
|
|
INSTANTIATE_TEST_SUITE_P(
|
|
DataChannelIntegrationTest,
|
|
DataChannelIntegrationTest,
|
|
Combine(Values(SdpSemantics::kPlanB, SdpSemantics::kUnifiedPlan),
|
|
Values("WebRTC-DataChannel-Dcsctp/Enabled/",
|
|
"WebRTC-DataChannel-Dcsctp/Disabled/")));
|
|
|
|
INSTANTIATE_TEST_SUITE_P(
|
|
DataChannelIntegrationTest,
|
|
DataChannelIntegrationTestWithFakeClock,
|
|
Combine(Values(SdpSemantics::kPlanB, SdpSemantics::kUnifiedPlan),
|
|
Values("WebRTC-DataChannel-Dcsctp/Enabled/",
|
|
"WebRTC-DataChannel-Dcsctp/Disabled/")));
|
|
|
|
TEST_F(DataChannelIntegrationTestUnifiedPlan,
|
|
EndToEndCallWithBundledSctpDataChannel) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->AddAudioVideoTracks();
|
|
callee()->AddAudioVideoTracks();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(caller()->pc()->GetSctpTransport(), kDefaultTimeout);
|
|
ASSERT_EQ_WAIT(SctpTransportState::kConnected,
|
|
caller()->pc()->GetSctpTransport()->Information().state(),
|
|
kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
}
|
|
|
|
TEST_F(DataChannelIntegrationTestUnifiedPlan,
|
|
EndToEndCallWithDataChannelOnlyConnects) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
ASSERT_TRUE(caller()->data_observer()->IsOpen());
|
|
}
|
|
|
|
TEST_F(DataChannelIntegrationTestUnifiedPlan, DataChannelClosesWhenClosed) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
caller()->data_channel()->Close();
|
|
ASSERT_TRUE_WAIT(!callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
}
|
|
|
|
TEST_F(DataChannelIntegrationTestUnifiedPlan,
|
|
DataChannelClosesWhenClosedReverse) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
callee()->data_channel()->Close();
|
|
ASSERT_TRUE_WAIT(!caller()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
}
|
|
|
|
TEST_F(DataChannelIntegrationTestUnifiedPlan,
|
|
DataChannelClosesWhenPeerConnectionClosed) {
|
|
ASSERT_TRUE(CreatePeerConnectionWrappers());
|
|
ConnectFakeSignaling();
|
|
caller()->CreateDataChannel();
|
|
caller()->CreateAndSetAndSignalOffer();
|
|
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
|
|
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
caller()->pc()->Close();
|
|
ASSERT_TRUE_WAIT(!callee()->data_observer()->IsOpen(), kDefaultTimeout);
|
|
}
|
|
|
|
#endif // WEBRTC_HAVE_SCTP
|
|
|
|
} // namespace
|
|
|
|
} // namespace webrtc
|