webrtc/modules/audio_coding/neteq/delay_manager.cc
Jakob Ivarsson c782cf883c Introduce a stable playout delay mode for NetEq.
A packet arrival history is used to store the timing of incoming packets and tracks the earliest and latest packets by taking the difference between rtp timestamp and arrival time. The history is windowed to 2 seconds by default. The packet arrival history will replace the relative arrival delay tracker in a follow up cl.

The playout delay is estimated by taking the difference between the current playout timestamp and the earliest packet arrival in the history. This method works better when DTX is used compared to the buffer level filter that it replaces.

The threshold for acceleration is changed to be the maximum of the target delay and the maximum packet arrival delay in the history. This prevents any acceleration immediately after an underrun and gives some time to adapt the target delay to new network conditions.

The logic when to decode the next packet after a packet loss is also changed to do concealment for the full loss duration unless the delay is too high.

The new mode is default disabled and can be enabled using a field trial.

Bug: webrtc:13322,webrtc:13966
Change-Id: Idfa0020584591261475b9ca350cc7c6531de9911
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/259820
Reviewed-by: Minyue Li <minyue@webrtc.org>
Commit-Queue: Jakob Ivarsson‎ <jakobi@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36899}
2022-05-16 15:39:14 +00:00

222 lines
7.2 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/neteq/delay_manager.h"
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <memory>
#include <numeric>
#include <string>
#include "modules/include/module_common_types_public.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/struct_parameters_parser.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
constexpr int kMinBaseMinimumDelayMs = 0;
constexpr int kMaxBaseMinimumDelayMs = 10000;
constexpr int kStartDelayMs = 80;
std::unique_ptr<ReorderOptimizer> MaybeCreateReorderOptimizer(
const DelayManager::Config& config) {
if (!config.use_reorder_optimizer) {
return nullptr;
}
return std::make_unique<ReorderOptimizer>(
(1 << 15) * config.reorder_forget_factor, config.ms_per_loss_percent,
config.start_forget_weight);
}
} // namespace
DelayManager::Config::Config() {
StructParametersParser::Create( //
"quantile", &quantile, //
"forget_factor", &forget_factor, //
"start_forget_weight", &start_forget_weight, //
"resample_interval_ms", &resample_interval_ms, //
"max_history_ms", &max_history_ms, //
"use_reorder_optimizer", &use_reorder_optimizer, //
"reorder_forget_factor", &reorder_forget_factor, //
"ms_per_loss_percent", &ms_per_loss_percent)
->Parse(webrtc::field_trial::FindFullName(
"WebRTC-Audio-NetEqDelayManagerConfig"));
}
void DelayManager::Config::Log() {
RTC_LOG(LS_INFO) << "Delay manager config:"
" quantile="
<< quantile << " forget_factor=" << forget_factor
<< " start_forget_weight=" << start_forget_weight.value_or(0)
<< " resample_interval_ms="
<< resample_interval_ms.value_or(0)
<< " max_history_ms=" << max_history_ms
<< " use_reorder_optimizer=" << use_reorder_optimizer
<< " reorder_forget_factor=" << reorder_forget_factor
<< " ms_per_loss_percent=" << ms_per_loss_percent;
}
DelayManager::DelayManager(const Config& config, const TickTimer* tick_timer)
: max_packets_in_buffer_(config.max_packets_in_buffer),
underrun_optimizer_(tick_timer,
(1 << 30) * config.quantile,
(1 << 15) * config.forget_factor,
config.start_forget_weight,
config.resample_interval_ms),
reorder_optimizer_(MaybeCreateReorderOptimizer(config)),
relative_arrival_delay_tracker_(tick_timer, config.max_history_ms),
base_minimum_delay_ms_(config.base_minimum_delay_ms),
effective_minimum_delay_ms_(config.base_minimum_delay_ms),
minimum_delay_ms_(0),
maximum_delay_ms_(0),
target_level_ms_(kStartDelayMs) {
RTC_DCHECK_GE(base_minimum_delay_ms_, 0);
Reset();
}
DelayManager::~DelayManager() {}
absl::optional<int> DelayManager::Update(uint32_t timestamp,
int sample_rate_hz,
bool reset) {
if (reset) {
relative_arrival_delay_tracker_.Reset();
}
absl::optional<int> relative_delay =
relative_arrival_delay_tracker_.Update(timestamp, sample_rate_hz);
if (!relative_delay) {
return absl::nullopt;
}
bool reordered =
relative_arrival_delay_tracker_.newest_timestamp() != timestamp;
if (!reorder_optimizer_ || !reordered) {
underrun_optimizer_.Update(*relative_delay);
}
target_level_ms_ =
underrun_optimizer_.GetOptimalDelayMs().value_or(kStartDelayMs);
if (reorder_optimizer_) {
reorder_optimizer_->Update(*relative_delay, reordered, target_level_ms_);
target_level_ms_ = std::max(
target_level_ms_, reorder_optimizer_->GetOptimalDelayMs().value_or(0));
}
target_level_ms_ = std::max(target_level_ms_, effective_minimum_delay_ms_);
if (maximum_delay_ms_ > 0) {
target_level_ms_ = std::min(target_level_ms_, maximum_delay_ms_);
}
if (packet_len_ms_ > 0) {
// Limit to 75% of maximum buffer size.
target_level_ms_ = std::min(
target_level_ms_, 3 * max_packets_in_buffer_ * packet_len_ms_ / 4);
}
return relative_delay;
}
int DelayManager::SetPacketAudioLength(int length_ms) {
if (length_ms <= 0) {
RTC_LOG_F(LS_ERROR) << "length_ms = " << length_ms;
return -1;
}
packet_len_ms_ = length_ms;
return 0;
}
void DelayManager::Reset() {
packet_len_ms_ = 0;
underrun_optimizer_.Reset();
relative_arrival_delay_tracker_.Reset();
target_level_ms_ = kStartDelayMs;
if (reorder_optimizer_) {
reorder_optimizer_->Reset();
}
}
int DelayManager::TargetDelayMs() const {
return target_level_ms_;
}
bool DelayManager::IsValidMinimumDelay(int delay_ms) const {
return 0 <= delay_ms && delay_ms <= MinimumDelayUpperBound();
}
bool DelayManager::IsValidBaseMinimumDelay(int delay_ms) const {
return kMinBaseMinimumDelayMs <= delay_ms &&
delay_ms <= kMaxBaseMinimumDelayMs;
}
bool DelayManager::SetMinimumDelay(int delay_ms) {
if (!IsValidMinimumDelay(delay_ms)) {
return false;
}
minimum_delay_ms_ = delay_ms;
UpdateEffectiveMinimumDelay();
return true;
}
bool DelayManager::SetMaximumDelay(int delay_ms) {
// If `delay_ms` is zero then it unsets the maximum delay and target level is
// unconstrained by maximum delay.
if (delay_ms != 0 && delay_ms < minimum_delay_ms_) {
// Maximum delay shouldn't be less than minimum delay or less than a packet.
return false;
}
maximum_delay_ms_ = delay_ms;
UpdateEffectiveMinimumDelay();
return true;
}
bool DelayManager::SetBaseMinimumDelay(int delay_ms) {
if (!IsValidBaseMinimumDelay(delay_ms)) {
return false;
}
base_minimum_delay_ms_ = delay_ms;
UpdateEffectiveMinimumDelay();
return true;
}
int DelayManager::GetBaseMinimumDelay() const {
return base_minimum_delay_ms_;
}
void DelayManager::UpdateEffectiveMinimumDelay() {
// Clamp `base_minimum_delay_ms_` into the range which can be effectively
// used.
const int base_minimum_delay_ms =
rtc::SafeClamp(base_minimum_delay_ms_, 0, MinimumDelayUpperBound());
effective_minimum_delay_ms_ =
std::max(minimum_delay_ms_, base_minimum_delay_ms);
}
int DelayManager::MinimumDelayUpperBound() const {
// Choose the lowest possible bound discarding 0 cases which mean the value
// is not set and unconstrained.
int q75 = max_packets_in_buffer_ * packet_len_ms_ * 3 / 4;
q75 = q75 > 0 ? q75 : kMaxBaseMinimumDelayMs;
const int maximum_delay_ms =
maximum_delay_ms_ > 0 ? maximum_delay_ms_ : kMaxBaseMinimumDelayMs;
return std::min(maximum_delay_ms, q75);
}
} // namespace webrtc