webrtc/modules/audio_coding/neteq/delay_manager_unittest.cc
Jakob Ivarsson c782cf883c Introduce a stable playout delay mode for NetEq.
A packet arrival history is used to store the timing of incoming packets and tracks the earliest and latest packets by taking the difference between rtp timestamp and arrival time. The history is windowed to 2 seconds by default. The packet arrival history will replace the relative arrival delay tracker in a follow up cl.

The playout delay is estimated by taking the difference between the current playout timestamp and the earliest packet arrival in the history. This method works better when DTX is used compared to the buffer level filter that it replaces.

The threshold for acceleration is changed to be the maximum of the target delay and the maximum packet arrival delay in the history. This prevents any acceleration immediately after an underrun and gives some time to adapt the target delay to new network conditions.

The logic when to decode the next packet after a packet loss is also changed to do concealment for the full loss duration unless the delay is too high.

The new mode is default disabled and can be enabled using a field trial.

Bug: webrtc:13322,webrtc:13966
Change-Id: Idfa0020584591261475b9ca350cc7c6531de9911
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/259820
Reviewed-by: Minyue Li <minyue@webrtc.org>
Commit-Queue: Jakob Ivarsson‎ <jakobi@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36899}
2022-05-16 15:39:14 +00:00

262 lines
8.9 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Unit tests for DelayManager class.
#include "modules/audio_coding/neteq/delay_manager.h"
#include <math.h>
#include <memory>
#include "absl/types/optional.h"
#include "modules/audio_coding/neteq/histogram.h"
#include "modules/audio_coding/neteq/mock/mock_histogram.h"
#include "modules/audio_coding/neteq/mock/mock_statistics_calculator.h"
#include "rtc_base/checks.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr int kMaxNumberOfPackets = 200;
constexpr int kTimeStepMs = 10;
constexpr int kFs = 8000;
constexpr int kFrameSizeMs = 20;
constexpr int kTsIncrement = kFrameSizeMs * kFs / 1000;
constexpr int kMaxBufferSizeMs = kMaxNumberOfPackets * kFrameSizeMs;
} // namespace
class DelayManagerTest : public ::testing::Test {
protected:
DelayManagerTest();
virtual void SetUp();
absl::optional<int> InsertNextPacket();
void IncreaseTime(int inc_ms);
TickTimer tick_timer_;
DelayManager dm_;
uint32_t ts_;
};
DelayManagerTest::DelayManagerTest()
: dm_(DelayManager::Config(), &tick_timer_), ts_(0x12345678) {}
void DelayManagerTest::SetUp() {
dm_.SetPacketAudioLength(kFrameSizeMs);
}
absl::optional<int> DelayManagerTest::InsertNextPacket() {
auto relative_delay = dm_.Update(ts_, kFs);
ts_ += kTsIncrement;
return relative_delay;
}
void DelayManagerTest::IncreaseTime(int inc_ms) {
for (int t = 0; t < inc_ms; t += kTimeStepMs) {
tick_timer_.Increment();
}
}
TEST_F(DelayManagerTest, CreateAndDestroy) {
// Nothing to do here. The test fixture creates and destroys the DelayManager
// object.
}
TEST_F(DelayManagerTest, UpdateNormal) {
for (int i = 0; i < 50; ++i) {
InsertNextPacket();
IncreaseTime(kFrameSizeMs);
}
EXPECT_EQ(20, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, MaxDelay) {
InsertNextPacket();
const int kMaxDelayMs = 60;
EXPECT_GT(dm_.TargetDelayMs(), kMaxDelayMs);
EXPECT_TRUE(dm_.SetMaximumDelay(kMaxDelayMs));
InsertNextPacket();
EXPECT_EQ(kMaxDelayMs, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, MinDelay) {
InsertNextPacket();
int kMinDelayMs = 7 * kFrameSizeMs;
EXPECT_LT(dm_.TargetDelayMs(), kMinDelayMs);
dm_.SetMinimumDelay(kMinDelayMs);
IncreaseTime(kFrameSizeMs);
InsertNextPacket();
EXPECT_EQ(kMinDelayMs, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, BaseMinimumDelayCheckValidRange) {
// Base minimum delay should be between [0, 10000] milliseconds.
EXPECT_FALSE(dm_.SetBaseMinimumDelay(-1));
EXPECT_FALSE(dm_.SetBaseMinimumDelay(10001));
EXPECT_EQ(dm_.GetBaseMinimumDelay(), 0);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(7999));
EXPECT_EQ(dm_.GetBaseMinimumDelay(), 7999);
}
TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMinimumDelay) {
constexpr int kBaseMinimumDelayMs = 100;
constexpr int kMinimumDelayMs = 200;
// Base minimum delay sets lower bound on minimum. That is why when base
// minimum delay is lower than minimum delay we use minimum delay.
RTC_DCHECK_LT(kBaseMinimumDelayMs, kMinimumDelayMs);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
}
TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMinimumDelay) {
constexpr int kBaseMinimumDelayMs = 70;
constexpr int kMinimumDelayMs = 30;
// Base minimum delay sets lower bound on minimum. That is why when base
// minimum delay is greater than minimum delay we use base minimum delay.
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs);
}
TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanBufferSize) {
constexpr int kBaseMinimumDelayMs = kMaxBufferSizeMs + 1;
constexpr int kMinimumDelayMs = 12;
constexpr int kMaximumDelayMs = 20;
constexpr int kMaxBufferSizeMsQ75 = 3 * kMaxBufferSizeMs / 4;
EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs));
// Base minimum delay is greater than minimum delay, that is why we clamp
// it to current the highest possible value which is maximum delay.
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaxBufferSizeMs);
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs);
RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMsQ75);
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
// Unset maximum value.
EXPECT_TRUE(dm_.SetMaximumDelay(0));
// With maximum value unset, the highest possible value now is 75% of
// currently possible maximum buffer size.
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMaxBufferSizeMsQ75);
}
TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMaximumDelay) {
constexpr int kMaximumDelayMs = 400;
constexpr int kBaseMinimumDelayMs = kMaximumDelayMs + 1;
constexpr int kMinimumDelayMs = 20;
// Base minimum delay is greater than minimum delay, that is why we clamp
// it to current the highest possible value which is kMaximumDelayMs.
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs);
RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMs);
EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMaximumDelayMs);
}
TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMaxSize) {
constexpr int kMaximumDelayMs = 400;
constexpr int kBaseMinimumDelayMs = kMaximumDelayMs - 1;
constexpr int kMinimumDelayMs = 20;
// Base minimum delay is greater than minimum delay, and lower than maximum
// delays that is why it is used.
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);
RTC_DCHECK_LT(kBaseMinimumDelayMs, kMaximumDelayMs);
EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs);
}
TEST_F(DelayManagerTest, MinimumDelayMemorization) {
// Check that when we increase base minimum delay to value higher than
// minimum delay then minimum delay is still memorized. This allows to
// restore effective minimum delay to memorized minimum delay value when we
// decrease base minimum delay.
constexpr int kBaseMinimumDelayMsLow = 10;
constexpr int kMinimumDelayMs = 20;
constexpr int kBaseMinimumDelayMsHigh = 30;
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsLow));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
// Minimum delay is used as it is higher than base minimum delay.
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsHigh));
// Base minimum delay is used as it is now higher than minimum delay.
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMsHigh);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsLow));
// Check that minimum delay is memorized and is used again.
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
}
TEST_F(DelayManagerTest, BaseMinimumDelay) {
// First packet arrival.
InsertNextPacket();
constexpr int kBaseMinimumDelayMs = 7 * kFrameSizeMs;
EXPECT_LT(dm_.TargetDelayMs(), kBaseMinimumDelayMs);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs);
IncreaseTime(kFrameSizeMs);
InsertNextPacket();
EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs);
EXPECT_EQ(kBaseMinimumDelayMs, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, Failures) {
// Wrong sample rate.
EXPECT_EQ(absl::nullopt, dm_.Update(0, -1));
// Wrong packet size.
EXPECT_EQ(-1, dm_.SetPacketAudioLength(0));
EXPECT_EQ(-1, dm_.SetPacketAudioLength(-1));
// Minimum delay higher than a maximum delay is not accepted.
EXPECT_TRUE(dm_.SetMaximumDelay(20));
EXPECT_FALSE(dm_.SetMinimumDelay(40));
// Maximum delay less than minimum delay is not accepted.
EXPECT_TRUE(dm_.SetMaximumDelay(100));
EXPECT_TRUE(dm_.SetMinimumDelay(80));
EXPECT_FALSE(dm_.SetMaximumDelay(60));
}
TEST_F(DelayManagerTest, RelativeArrivalDelayStatistic) {
EXPECT_EQ(absl::nullopt, InsertNextPacket());
IncreaseTime(kFrameSizeMs);
EXPECT_EQ(0, InsertNextPacket());
IncreaseTime(2 * kFrameSizeMs);
EXPECT_EQ(20, InsertNextPacket());
}
} // namespace webrtc