webrtc/p2p/base/pseudo_tcp_unittest.cc
Tomas Gunnarsson abdb470d00 Make MessageHandler cleanup optional.
As documented in webrtc:11908 this cleanup is fairly invasive and
when a part of a frequently executed code path, can be quite costly
in terms of performance overhead. This is currently the case with
synchronous calls between threads (Thread) as well with our proxy
api classes.

With this CL, all code in WebRTC should now either be using MessageHandlerAutoCleanup
or calling MessageHandler(false) explicitly.

Next steps will be to update external code to either depend on the
AutoCleanup variant, or call MessageHandler(false).

Changing the proxy classes to use TaskQueue set of concepts instead of
MessageHandler. This avoids the perf overhead related to the cleanup
above as well as incompatibility with the thread policy checks in
Thread that some current external users of the proxies would otherwise
run into (if we were to use Thread::Send() for synchronous call).

Following this we'll move the cleanup step into the AutoCleanup class
and an RTC_DCHECK that all calls to the MessageHandler are setting
the flag to false, before eventually removing the flag and make
MessageHandler pure virtual.

Bug: webrtc:11908
Change-Id: Idf4ff9bcc8438cb8c583777e282005e0bc511c8f
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/183442
Reviewed-by: Artem Titov <titovartem@webrtc.org>
Commit-Queue: Tommi <tommi@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#32049}
2020-09-07 12:57:15 +00:00

881 lines
27 KiB
C++

/*
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "p2p/base/pseudo_tcp.h"
#include <string.h>
#include <algorithm>
#include <cstddef>
#include <string>
#include <vector>
#include "rtc_base/gunit.h"
#include "rtc_base/helpers.h"
#include "rtc_base/location.h"
#include "rtc_base/logging.h"
#include "rtc_base/memory_stream.h"
#include "rtc_base/message_handler.h"
#include "rtc_base/thread.h"
#include "rtc_base/time_utils.h"
#include "test/gtest.h"
using cricket::PseudoTcp;
static const int kConnectTimeoutMs = 10000; // ~3 * default RTO of 3000ms
static const int kTransferTimeoutMs = 15000;
static const int kBlockSize = 4096;
class PseudoTcpForTest : public cricket::PseudoTcp {
public:
PseudoTcpForTest(cricket::IPseudoTcpNotify* notify, uint32_t conv)
: PseudoTcp(notify, conv) {}
bool isReceiveBufferFull() const { return PseudoTcp::isReceiveBufferFull(); }
void disableWindowScale() { PseudoTcp::disableWindowScale(); }
};
class PseudoTcpTestBase : public ::testing::Test,
public rtc::MessageHandlerAutoCleanup,
public cricket::IPseudoTcpNotify {
public:
PseudoTcpTestBase()
: local_(this, 1),
remote_(this, 1),
have_connected_(false),
have_disconnected_(false),
local_mtu_(65535),
remote_mtu_(65535),
delay_(0),
loss_(0) {
// Set use of the test RNG to get predictable loss patterns. Otherwise,
// this test would occasionally get really unlucky loss and time out.
rtc::SetRandomTestMode(true);
}
~PseudoTcpTestBase() {
// Put it back for the next test.
rtc::SetRandomTestMode(false);
}
// If true, both endpoints will send the "connect" segment simultaneously,
// rather than |local_| sending it followed by a response from |remote_|.
// Note that this is what chromoting ends up doing.
void SetSimultaneousOpen(bool enabled) { simultaneous_open_ = enabled; }
void SetLocalMtu(int mtu) {
local_.NotifyMTU(mtu);
local_mtu_ = mtu;
}
void SetRemoteMtu(int mtu) {
remote_.NotifyMTU(mtu);
remote_mtu_ = mtu;
}
void SetDelay(int delay) { delay_ = delay; }
void SetLoss(int percent) { loss_ = percent; }
// Used to cause the initial "connect" segment to be lost, needed for a
// regression test.
void DropNextPacket() { drop_next_packet_ = true; }
void SetOptNagling(bool enable_nagles) {
local_.SetOption(PseudoTcp::OPT_NODELAY, !enable_nagles);
remote_.SetOption(PseudoTcp::OPT_NODELAY, !enable_nagles);
}
void SetOptAckDelay(int ack_delay) {
local_.SetOption(PseudoTcp::OPT_ACKDELAY, ack_delay);
remote_.SetOption(PseudoTcp::OPT_ACKDELAY, ack_delay);
}
void SetOptSndBuf(int size) {
local_.SetOption(PseudoTcp::OPT_SNDBUF, size);
remote_.SetOption(PseudoTcp::OPT_SNDBUF, size);
}
void SetRemoteOptRcvBuf(int size) {
remote_.SetOption(PseudoTcp::OPT_RCVBUF, size);
}
void SetLocalOptRcvBuf(int size) {
local_.SetOption(PseudoTcp::OPT_RCVBUF, size);
}
void DisableRemoteWindowScale() { remote_.disableWindowScale(); }
void DisableLocalWindowScale() { local_.disableWindowScale(); }
protected:
int Connect() {
int ret = local_.Connect();
if (ret == 0) {
UpdateLocalClock();
}
if (simultaneous_open_) {
ret = remote_.Connect();
if (ret == 0) {
UpdateRemoteClock();
}
}
return ret;
}
void Close() {
local_.Close(false);
UpdateLocalClock();
}
enum {
MSG_LPACKET,
MSG_RPACKET,
MSG_LCLOCK,
MSG_RCLOCK,
MSG_IOCOMPLETE,
MSG_WRITE
};
virtual void OnTcpOpen(PseudoTcp* tcp) {
// Consider ourselves connected when the local side gets OnTcpOpen.
// OnTcpWriteable isn't fired at open, so we trigger it now.
RTC_LOG(LS_VERBOSE) << "Opened";
if (tcp == &local_) {
have_connected_ = true;
OnTcpWriteable(tcp);
}
}
// Test derived from the base should override
// virtual void OnTcpReadable(PseudoTcp* tcp)
// and
// virtual void OnTcpWritable(PseudoTcp* tcp)
virtual void OnTcpClosed(PseudoTcp* tcp, uint32_t error) {
// Consider ourselves closed when the remote side gets OnTcpClosed.
// TODO(?): OnTcpClosed is only ever notified in case of error in
// the current implementation. Solicited close is not (yet) supported.
RTC_LOG(LS_VERBOSE) << "Closed";
EXPECT_EQ(0U, error);
if (tcp == &remote_) {
have_disconnected_ = true;
}
}
virtual WriteResult TcpWritePacket(PseudoTcp* tcp,
const char* buffer,
size_t len) {
// Drop a packet if the test called DropNextPacket.
if (drop_next_packet_) {
drop_next_packet_ = false;
RTC_LOG(LS_VERBOSE) << "Dropping packet due to DropNextPacket, size="
<< len;
return WR_SUCCESS;
}
// Randomly drop the desired percentage of packets.
if (rtc::CreateRandomId() % 100 < static_cast<uint32_t>(loss_)) {
RTC_LOG(LS_VERBOSE) << "Randomly dropping packet, size=" << len;
return WR_SUCCESS;
}
// Also drop packets that are larger than the configured MTU.
if (len > static_cast<size_t>(std::min(local_mtu_, remote_mtu_))) {
RTC_LOG(LS_VERBOSE) << "Dropping packet that exceeds path MTU, size="
<< len;
return WR_SUCCESS;
}
int id = (tcp == &local_) ? MSG_RPACKET : MSG_LPACKET;
std::string packet(buffer, len);
rtc::Thread::Current()->PostDelayed(RTC_FROM_HERE, delay_, this, id,
rtc::WrapMessageData(packet));
return WR_SUCCESS;
}
void UpdateLocalClock() { UpdateClock(&local_, MSG_LCLOCK); }
void UpdateRemoteClock() { UpdateClock(&remote_, MSG_RCLOCK); }
void UpdateClock(PseudoTcp* tcp, uint32_t message) {
long interval = 0; // NOLINT
tcp->GetNextClock(PseudoTcp::Now(), interval);
interval = std::max<int>(interval, 0L); // sometimes interval is < 0
rtc::Thread::Current()->Clear(this, message);
rtc::Thread::Current()->PostDelayed(RTC_FROM_HERE, interval, this, message);
}
virtual void OnMessage(rtc::Message* message) {
switch (message->message_id) {
case MSG_LPACKET: {
const std::string& s(rtc::UseMessageData<std::string>(message->pdata));
local_.NotifyPacket(s.c_str(), s.size());
UpdateLocalClock();
break;
}
case MSG_RPACKET: {
const std::string& s(rtc::UseMessageData<std::string>(message->pdata));
remote_.NotifyPacket(s.c_str(), s.size());
UpdateRemoteClock();
break;
}
case MSG_LCLOCK:
local_.NotifyClock(PseudoTcp::Now());
UpdateLocalClock();
break;
case MSG_RCLOCK:
remote_.NotifyClock(PseudoTcp::Now());
UpdateRemoteClock();
break;
default:
break;
}
delete message->pdata;
}
PseudoTcpForTest local_;
PseudoTcpForTest remote_;
rtc::MemoryStream send_stream_;
rtc::MemoryStream recv_stream_;
bool have_connected_;
bool have_disconnected_;
int local_mtu_;
int remote_mtu_;
int delay_;
int loss_;
bool drop_next_packet_ = false;
bool simultaneous_open_ = false;
};
class PseudoTcpTest : public PseudoTcpTestBase {
public:
void TestTransfer(int size) {
uint32_t start;
int32_t elapsed;
size_t received;
// Create some dummy data to send.
send_stream_.ReserveSize(size);
for (int i = 0; i < size; ++i) {
char ch = static_cast<char>(i);
send_stream_.Write(&ch, 1, NULL, NULL);
}
send_stream_.Rewind();
// Prepare the receive stream.
recv_stream_.ReserveSize(size);
// Connect and wait until connected.
start = rtc::Time32();
EXPECT_EQ(0, Connect());
EXPECT_TRUE_WAIT(have_connected_, kConnectTimeoutMs);
// Sending will start from OnTcpWriteable and complete when all data has
// been received.
EXPECT_TRUE_WAIT(have_disconnected_, kTransferTimeoutMs);
elapsed = rtc::Time32() - start;
recv_stream_.GetSize(&received);
// Ensure we closed down OK and we got the right data.
// TODO(?): Ensure the errors are cleared properly.
// EXPECT_EQ(0, local_.GetError());
// EXPECT_EQ(0, remote_.GetError());
EXPECT_EQ(static_cast<size_t>(size), received);
EXPECT_EQ(0,
memcmp(send_stream_.GetBuffer(), recv_stream_.GetBuffer(), size));
RTC_LOG(LS_INFO) << "Transferred " << received << " bytes in " << elapsed
<< " ms (" << size * 8 / elapsed << " Kbps)";
}
private:
// IPseudoTcpNotify interface
virtual void OnTcpReadable(PseudoTcp* tcp) {
// Stream bytes to the recv stream as they arrive.
if (tcp == &remote_) {
ReadData();
// TODO(?): OnTcpClosed() is currently only notified on error -
// there is no on-the-wire equivalent of TCP FIN.
// So we fake the notification when all the data has been read.
size_t received, required;
recv_stream_.GetPosition(&received);
send_stream_.GetSize(&required);
if (received == required)
OnTcpClosed(&remote_, 0);
}
}
virtual void OnTcpWriteable(PseudoTcp* tcp) {
// Write bytes from the send stream when we can.
// Shut down when we've sent everything.
if (tcp == &local_) {
RTC_LOG(LS_VERBOSE) << "Flow Control Lifted";
bool done;
WriteData(&done);
if (done) {
Close();
}
}
}
void ReadData() {
char block[kBlockSize];
size_t position;
int rcvd;
do {
rcvd = remote_.Recv(block, sizeof(block));
if (rcvd != -1) {
recv_stream_.Write(block, rcvd, NULL, NULL);
recv_stream_.GetPosition(&position);
RTC_LOG(LS_VERBOSE) << "Received: " << position;
}
} while (rcvd > 0);
}
void WriteData(bool* done) {
size_t position, tosend;
int sent;
char block[kBlockSize];
do {
send_stream_.GetPosition(&position);
if (send_stream_.Read(block, sizeof(block), &tosend, NULL) !=
rtc::SR_EOS) {
sent = local_.Send(block, tosend);
UpdateLocalClock();
if (sent != -1) {
send_stream_.SetPosition(position + sent);
RTC_LOG(LS_VERBOSE) << "Sent: " << position + sent;
} else {
send_stream_.SetPosition(position);
RTC_LOG(LS_VERBOSE) << "Flow Controlled";
}
} else {
sent = static_cast<int>(tosend = 0);
}
} while (sent > 0);
*done = (tosend == 0);
}
private:
rtc::MemoryStream send_stream_;
rtc::MemoryStream recv_stream_;
};
class PseudoTcpTestPingPong : public PseudoTcpTestBase {
public:
PseudoTcpTestPingPong()
: iterations_remaining_(0),
sender_(NULL),
receiver_(NULL),
bytes_per_send_(0) {}
void SetBytesPerSend(int bytes) { bytes_per_send_ = bytes; }
void TestPingPong(int size, int iterations) {
uint32_t start, elapsed;
iterations_remaining_ = iterations;
receiver_ = &remote_;
sender_ = &local_;
// Create some dummy data to send.
send_stream_.ReserveSize(size);
for (int i = 0; i < size; ++i) {
char ch = static_cast<char>(i);
send_stream_.Write(&ch, 1, NULL, NULL);
}
send_stream_.Rewind();
// Prepare the receive stream.
recv_stream_.ReserveSize(size);
// Connect and wait until connected.
start = rtc::Time32();
EXPECT_EQ(0, Connect());
EXPECT_TRUE_WAIT(have_connected_, kConnectTimeoutMs);
// Sending will start from OnTcpWriteable and stop when the required
// number of iterations have completed.
EXPECT_TRUE_WAIT(have_disconnected_, kTransferTimeoutMs);
elapsed = rtc::TimeSince(start);
RTC_LOG(LS_INFO) << "Performed " << iterations << " pings in " << elapsed
<< " ms";
}
private:
// IPseudoTcpNotify interface
virtual void OnTcpReadable(PseudoTcp* tcp) {
if (tcp != receiver_) {
RTC_LOG_F(LS_ERROR) << "unexpected OnTcpReadable";
return;
}
// Stream bytes to the recv stream as they arrive.
ReadData();
// If we've received the desired amount of data, rewind things
// and send it back the other way!
size_t position, desired;
recv_stream_.GetPosition(&position);
send_stream_.GetSize(&desired);
if (position == desired) {
if (receiver_ == &local_ && --iterations_remaining_ == 0) {
Close();
// TODO(?): Fake OnTcpClosed() on the receiver for now.
OnTcpClosed(&remote_, 0);
return;
}
PseudoTcp* tmp = receiver_;
receiver_ = sender_;
sender_ = tmp;
recv_stream_.Rewind();
send_stream_.Rewind();
OnTcpWriteable(sender_);
}
}
virtual void OnTcpWriteable(PseudoTcp* tcp) {
if (tcp != sender_)
return;
// Write bytes from the send stream when we can.
// Shut down when we've sent everything.
RTC_LOG(LS_VERBOSE) << "Flow Control Lifted";
WriteData();
}
void ReadData() {
char block[kBlockSize];
size_t position;
int rcvd;
do {
rcvd = receiver_->Recv(block, sizeof(block));
if (rcvd != -1) {
recv_stream_.Write(block, rcvd, NULL, NULL);
recv_stream_.GetPosition(&position);
RTC_LOG(LS_VERBOSE) << "Received: " << position;
}
} while (rcvd > 0);
}
void WriteData() {
size_t position, tosend;
int sent;
char block[kBlockSize];
do {
send_stream_.GetPosition(&position);
tosend = bytes_per_send_ ? bytes_per_send_ : sizeof(block);
if (send_stream_.Read(block, tosend, &tosend, NULL) != rtc::SR_EOS) {
sent = sender_->Send(block, tosend);
UpdateLocalClock();
if (sent != -1) {
send_stream_.SetPosition(position + sent);
RTC_LOG(LS_VERBOSE) << "Sent: " << position + sent;
} else {
send_stream_.SetPosition(position);
RTC_LOG(LS_VERBOSE) << "Flow Controlled";
}
} else {
sent = static_cast<int>(tosend = 0);
}
} while (sent > 0);
}
private:
int iterations_remaining_;
PseudoTcp* sender_;
PseudoTcp* receiver_;
int bytes_per_send_;
};
// Fill the receiver window until it is full, drain it and then
// fill it with the same amount. This is to test that receiver window
// contracts and enlarges correctly.
class PseudoTcpTestReceiveWindow : public PseudoTcpTestBase {
public:
// Not all the data are transfered, |size| just need to be big enough
// to fill up the receiver window twice.
void TestTransfer(int size) {
// Create some dummy data to send.
send_stream_.ReserveSize(size);
for (int i = 0; i < size; ++i) {
char ch = static_cast<char>(i);
send_stream_.Write(&ch, 1, NULL, NULL);
}
send_stream_.Rewind();
// Prepare the receive stream.
recv_stream_.ReserveSize(size);
// Connect and wait until connected.
EXPECT_EQ(0, Connect());
EXPECT_TRUE_WAIT(have_connected_, kConnectTimeoutMs);
rtc::Thread::Current()->Post(RTC_FROM_HERE, this, MSG_WRITE);
EXPECT_TRUE_WAIT(have_disconnected_, kTransferTimeoutMs);
ASSERT_EQ(2u, send_position_.size());
ASSERT_EQ(2u, recv_position_.size());
const size_t estimated_recv_window = EstimateReceiveWindowSize();
// The difference in consecutive send positions should equal the
// receive window size or match very closely. This verifies that receive
// window is open after receiver drained all the data.
const size_t send_position_diff = send_position_[1] - send_position_[0];
EXPECT_GE(1024u, estimated_recv_window - send_position_diff);
// Receiver drained the receive window twice.
EXPECT_EQ(2 * estimated_recv_window, recv_position_[1]);
}
virtual void OnMessage(rtc::Message* message) {
int message_id = message->message_id;
PseudoTcpTestBase::OnMessage(message);
switch (message_id) {
case MSG_WRITE: {
WriteData();
break;
}
default:
break;
}
}
uint32_t EstimateReceiveWindowSize() const {
return static_cast<uint32_t>(recv_position_[0]);
}
uint32_t EstimateSendWindowSize() const {
return static_cast<uint32_t>(send_position_[0] - recv_position_[0]);
}
private:
// IPseudoTcpNotify interface
virtual void OnTcpReadable(PseudoTcp* tcp) {}
virtual void OnTcpWriteable(PseudoTcp* tcp) {}
void ReadUntilIOPending() {
char block[kBlockSize];
size_t position;
int rcvd;
do {
rcvd = remote_.Recv(block, sizeof(block));
if (rcvd != -1) {
recv_stream_.Write(block, rcvd, NULL, NULL);
recv_stream_.GetPosition(&position);
RTC_LOG(LS_VERBOSE) << "Received: " << position;
}
} while (rcvd > 0);
recv_stream_.GetPosition(&position);
recv_position_.push_back(position);
// Disconnect if we have done two transfers.
if (recv_position_.size() == 2u) {
Close();
OnTcpClosed(&remote_, 0);
} else {
WriteData();
}
}
void WriteData() {
size_t position, tosend;
int sent;
char block[kBlockSize];
do {
send_stream_.GetPosition(&position);
if (send_stream_.Read(block, sizeof(block), &tosend, NULL) !=
rtc::SR_EOS) {
sent = local_.Send(block, tosend);
UpdateLocalClock();
if (sent != -1) {
send_stream_.SetPosition(position + sent);
RTC_LOG(LS_VERBOSE) << "Sent: " << position + sent;
} else {
send_stream_.SetPosition(position);
RTC_LOG(LS_VERBOSE) << "Flow Controlled";
}
} else {
sent = static_cast<int>(tosend = 0);
}
} while (sent > 0);
// At this point, we've filled up the available space in the send queue.
int message_queue_size = static_cast<int>(rtc::Thread::Current()->size());
// The message queue will always have at least 2 messages, an RCLOCK and
// an LCLOCK, since they are added back on the delay queue at the same time
// they are pulled off and therefore are never really removed.
if (message_queue_size > 2) {
// If there are non-clock messages remaining, attempt to continue sending
// after giving those messages time to process, which should free up the
// send buffer.
rtc::Thread::Current()->PostDelayed(RTC_FROM_HERE, 10, this, MSG_WRITE);
} else {
if (!remote_.isReceiveBufferFull()) {
RTC_LOG(LS_ERROR) << "This shouldn't happen - the send buffer is full, "
"the receive buffer is not, and there are no "
"remaining messages to process.";
}
send_stream_.GetPosition(&position);
send_position_.push_back(position);
// Drain the receiver buffer.
ReadUntilIOPending();
}
}
private:
rtc::MemoryStream send_stream_;
rtc::MemoryStream recv_stream_;
std::vector<size_t> send_position_;
std::vector<size_t> recv_position_;
};
// Basic end-to-end data transfer tests
// Test the normal case of sending data from one side to the other.
TEST_F(PseudoTcpTest, TestSend) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
TestTransfer(1000000);
}
// Test sending data with a 50 ms RTT. Transmission should take longer due
// to a slower ramp-up in send rate.
TEST_F(PseudoTcpTest, TestSendWithDelay) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetDelay(50);
TestTransfer(1000000);
}
// Test sending data with packet loss. Transmission should take much longer due
// to send back-off when loss occurs.
TEST_F(PseudoTcpTest, TestSendWithLoss) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetLoss(10);
TestTransfer(100000); // less data so test runs faster
}
// Test sending data with a 50 ms RTT and 10% packet loss. Transmission should
// take much longer due to send back-off and slower detection of loss.
TEST_F(PseudoTcpTest, TestSendWithDelayAndLoss) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetDelay(50);
SetLoss(10);
TestTransfer(100000); // less data so test runs faster
}
// Test sending data with 10% packet loss and Nagling disabled. Transmission
// should take about the same time as with Nagling enabled.
TEST_F(PseudoTcpTest, TestSendWithLossAndOptNaglingOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetLoss(10);
SetOptNagling(false);
TestTransfer(100000); // less data so test runs faster
}
// Regression test for bugs.webrtc.org/9208.
//
// This bug resulted in corrupted data if a "connect" segment was received after
// a data segment. This is only possible if:
//
// * The initial "connect" segment is lost, and retransmitted later.
// * Both sides send "connect"s simultaneously, such that the local side thinks
// a connection is established even before its "connect" has been
// acknowledged.
// * Nagle algorithm disabled, allowing a data segment to be sent before the
// "connect" has been acknowledged.
TEST_F(PseudoTcpTest,
TestSendWhenFirstPacketLostWithOptNaglingOffAndSimultaneousOpen) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
DropNextPacket();
SetOptNagling(false);
SetSimultaneousOpen(true);
TestTransfer(10000);
}
// Test sending data with 10% packet loss and Delayed ACK disabled.
// Transmission should be slightly faster than with it enabled.
TEST_F(PseudoTcpTest, TestSendWithLossAndOptAckDelayOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetLoss(10);
SetOptAckDelay(0);
TestTransfer(100000);
}
// Test sending data with 50ms delay and Nagling disabled.
TEST_F(PseudoTcpTest, TestSendWithDelayAndOptNaglingOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetDelay(50);
SetOptNagling(false);
TestTransfer(100000); // less data so test runs faster
}
// Test sending data with 50ms delay and Delayed ACK disabled.
TEST_F(PseudoTcpTest, TestSendWithDelayAndOptAckDelayOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetDelay(50);
SetOptAckDelay(0);
TestTransfer(100000); // less data so test runs faster
}
// Test a large receive buffer with a sender that doesn't support scaling.
TEST_F(PseudoTcpTest, TestSendRemoteNoWindowScale) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetLocalOptRcvBuf(100000);
DisableRemoteWindowScale();
TestTransfer(1000000);
}
// Test a large sender-side receive buffer with a receiver that doesn't support
// scaling.
TEST_F(PseudoTcpTest, TestSendLocalNoWindowScale) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetRemoteOptRcvBuf(100000);
DisableLocalWindowScale();
TestTransfer(1000000);
}
// Test when both sides use window scaling.
TEST_F(PseudoTcpTest, TestSendBothUseWindowScale) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetRemoteOptRcvBuf(100000);
SetLocalOptRcvBuf(100000);
TestTransfer(1000000);
}
// Test using a large window scale value.
TEST_F(PseudoTcpTest, TestSendLargeInFlight) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetRemoteOptRcvBuf(100000);
SetLocalOptRcvBuf(100000);
SetOptSndBuf(150000);
TestTransfer(1000000);
}
TEST_F(PseudoTcpTest, TestSendBothUseLargeWindowScale) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetRemoteOptRcvBuf(1000000);
SetLocalOptRcvBuf(1000000);
TestTransfer(10000000);
}
// Test using a small receive buffer.
TEST_F(PseudoTcpTest, TestSendSmallReceiveBuffer) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetRemoteOptRcvBuf(10000);
SetLocalOptRcvBuf(10000);
TestTransfer(1000000);
}
// Test using a very small receive buffer.
TEST_F(PseudoTcpTest, TestSendVerySmallReceiveBuffer) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetRemoteOptRcvBuf(100);
SetLocalOptRcvBuf(100);
TestTransfer(100000);
}
// Ping-pong (request/response) tests
// Test sending <= 1x MTU of data in each ping/pong. Should take <10ms.
TEST_F(PseudoTcpTestPingPong, TestPingPong1xMtu) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
TestPingPong(100, 100);
}
// Test sending 2x-3x MTU of data in each ping/pong. Should take <10ms.
TEST_F(PseudoTcpTestPingPong, TestPingPong3xMtu) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
TestPingPong(400, 100);
}
// Test sending 1x-2x MTU of data in each ping/pong.
// Should take ~1s, due to interaction between Nagling and Delayed ACK.
TEST_F(PseudoTcpTestPingPong, TestPingPong2xMtu) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
TestPingPong(2000, 5);
}
// Test sending 1x-2x MTU of data in each ping/pong with Delayed ACK off.
// Should take <10ms.
TEST_F(PseudoTcpTestPingPong, TestPingPong2xMtuWithAckDelayOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptAckDelay(0);
TestPingPong(2000, 100);
}
// Test sending 1x-2x MTU of data in each ping/pong with Nagling off.
// Should take <10ms.
TEST_F(PseudoTcpTestPingPong, TestPingPong2xMtuWithNaglingOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptNagling(false);
TestPingPong(2000, 5);
}
// Test sending a ping as pair of short (non-full) segments.
// Should take ~1s, due to Delayed ACK interaction with Nagling.
TEST_F(PseudoTcpTestPingPong, TestPingPongShortSegments) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptAckDelay(5000);
SetBytesPerSend(50); // i.e. two Send calls per payload
TestPingPong(100, 5);
}
// Test sending ping as a pair of short (non-full) segments, with Nagling off.
// Should take <10ms.
TEST_F(PseudoTcpTestPingPong, TestPingPongShortSegmentsWithNaglingOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptNagling(false);
SetBytesPerSend(50); // i.e. two Send calls per payload
TestPingPong(100, 5);
}
// Test sending <= 1x MTU of data ping/pong, in two segments, no Delayed ACK.
// Should take ~1s.
TEST_F(PseudoTcpTestPingPong, TestPingPongShortSegmentsWithAckDelayOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetBytesPerSend(50); // i.e. two Send calls per payload
SetOptAckDelay(0);
TestPingPong(100, 5);
}
// Test that receive window expands and contract correctly.
TEST_F(PseudoTcpTestReceiveWindow, TestReceiveWindow) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptNagling(false);
SetOptAckDelay(0);
TestTransfer(1024 * 1000);
}
// Test setting send window size to a very small value.
TEST_F(PseudoTcpTestReceiveWindow, TestSetVerySmallSendWindowSize) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptNagling(false);
SetOptAckDelay(0);
SetOptSndBuf(900);
TestTransfer(1024 * 1000);
EXPECT_EQ(900u, EstimateSendWindowSize());
}
// Test setting receive window size to a value other than default.
TEST_F(PseudoTcpTestReceiveWindow, TestSetReceiveWindowSize) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptNagling(false);
SetOptAckDelay(0);
SetRemoteOptRcvBuf(100000);
SetLocalOptRcvBuf(100000);
TestTransfer(1024 * 1000);
EXPECT_EQ(100000u, EstimateReceiveWindowSize());
}
/* Test sending data with mismatched MTUs. We should detect this and reduce
// our packet size accordingly.
// TODO(?): This doesn't actually work right now. The current code
// doesn't detect if the MTU is set too high on either side.
TEST_F(PseudoTcpTest, TestSendWithMismatchedMtus) {
SetLocalMtu(1500);
SetRemoteMtu(1280);
TestTransfer(1000000);
}
*/