webrtc/rtc_base/deprecated/recursive_critical_section_unittest.cc
Tomas Gunnarsson abdb470d00 Make MessageHandler cleanup optional.
As documented in webrtc:11908 this cleanup is fairly invasive and
when a part of a frequently executed code path, can be quite costly
in terms of performance overhead. This is currently the case with
synchronous calls between threads (Thread) as well with our proxy
api classes.

With this CL, all code in WebRTC should now either be using MessageHandlerAutoCleanup
or calling MessageHandler(false) explicitly.

Next steps will be to update external code to either depend on the
AutoCleanup variant, or call MessageHandler(false).

Changing the proxy classes to use TaskQueue set of concepts instead of
MessageHandler. This avoids the perf overhead related to the cleanup
above as well as incompatibility with the thread policy checks in
Thread that some current external users of the proxies would otherwise
run into (if we were to use Thread::Send() for synchronous call).

Following this we'll move the cleanup step into the AutoCleanup class
and an RTC_DCHECK that all calls to the MessageHandler are setting
the flag to false, before eventually removing the flag and make
MessageHandler pure virtual.

Bug: webrtc:11908
Change-Id: Idf4ff9bcc8438cb8c583777e282005e0bc511c8f
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/183442
Reviewed-by: Artem Titov <titovartem@webrtc.org>
Commit-Queue: Tommi <tommi@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#32049}
2020-09-07 12:57:15 +00:00

411 lines
11 KiB
C++

/*
* Copyright 2014 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/deprecated/recursive_critical_section.h"
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <set>
#include <type_traits>
#include <utility>
#include <vector>
#include "absl/base/attributes.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/atomic_ops.h"
#include "rtc_base/checks.h"
#include "rtc_base/event.h"
#include "rtc_base/location.h"
#include "rtc_base/message_handler.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/thread.h"
#include "test/gtest.h"
namespace rtc {
namespace {
const int kLongTime = 10000; // 10 seconds
const int kNumThreads = 16;
const int kOperationsToRun = 1000;
class UniqueValueVerifier {
public:
void Verify(const std::vector<int>& values) {
for (size_t i = 0; i < values.size(); ++i) {
std::pair<std::set<int>::iterator, bool> result =
all_values_.insert(values[i]);
// Each value should only be taken by one thread, so if this value
// has already been added, something went wrong.
EXPECT_TRUE(result.second)
<< " Thread=" << Thread::Current() << " value=" << values[i];
}
}
void Finalize() {}
private:
std::set<int> all_values_;
};
class CompareAndSwapVerifier {
public:
CompareAndSwapVerifier() : zero_count_(0) {}
void Verify(const std::vector<int>& values) {
for (auto v : values) {
if (v == 0) {
EXPECT_EQ(0, zero_count_) << "Thread=" << Thread::Current();
++zero_count_;
} else {
EXPECT_EQ(1, v) << " Thread=" << Thread::Current();
}
}
}
void Finalize() { EXPECT_EQ(1, zero_count_); }
private:
int zero_count_;
};
class RunnerBase : public MessageHandlerAutoCleanup {
public:
explicit RunnerBase(int value)
: threads_active_(0),
start_event_(true, false),
done_event_(true, false),
shared_value_(value) {}
bool Run() {
// Signal all threads to start.
start_event_.Set();
// Wait for all threads to finish.
return done_event_.Wait(kLongTime);
}
void SetExpectedThreadCount(int count) { threads_active_ = count; }
int shared_value() const { return shared_value_; }
protected:
// Derived classes must override OnMessage, and call BeforeStart and AfterEnd
// at the beginning and the end of OnMessage respectively.
void BeforeStart() { ASSERT_TRUE(start_event_.Wait(kLongTime)); }
// Returns true if all threads have finished.
bool AfterEnd() {
if (AtomicOps::Decrement(&threads_active_) == 0) {
done_event_.Set();
return true;
}
return false;
}
int threads_active_;
Event start_event_;
Event done_event_;
int shared_value_;
};
class RTC_LOCKABLE CriticalSectionLock {
public:
void Lock() RTC_EXCLUSIVE_LOCK_FUNCTION() { cs_.Enter(); }
void Unlock() RTC_UNLOCK_FUNCTION() { cs_.Leave(); }
private:
RecursiveCriticalSection cs_;
};
template <class Lock>
class LockRunner : public RunnerBase {
public:
LockRunner() : RunnerBase(0) {}
void OnMessage(Message* msg) override {
BeforeStart();
lock_.Lock();
EXPECT_EQ(0, shared_value_);
int old = shared_value_;
// Use a loop to increase the chance of race.
for (int i = 0; i < kOperationsToRun; ++i) {
++shared_value_;
}
EXPECT_EQ(old + kOperationsToRun, shared_value_);
shared_value_ = 0;
lock_.Unlock();
AfterEnd();
}
private:
Lock lock_;
};
template <class Op, class Verifier>
class AtomicOpRunner : public RunnerBase {
public:
explicit AtomicOpRunner(int initial_value) : RunnerBase(initial_value) {}
void OnMessage(Message* msg) override {
BeforeStart();
std::vector<int> values;
values.reserve(kOperationsToRun);
// Generate a bunch of values by updating shared_value_ atomically.
for (int i = 0; i < kOperationsToRun; ++i) {
values.push_back(Op::AtomicOp(&shared_value_));
}
{ // Add them all to the set.
CritScope cs(&all_values_crit_);
verifier_.Verify(values);
}
if (AfterEnd()) {
verifier_.Finalize();
}
}
private:
RecursiveCriticalSection all_values_crit_;
Verifier verifier_;
};
struct IncrementOp {
static int AtomicOp(int* i) { return AtomicOps::Increment(i); }
};
struct DecrementOp {
static int AtomicOp(int* i) { return AtomicOps::Decrement(i); }
};
struct CompareAndSwapOp {
static int AtomicOp(int* i) { return AtomicOps::CompareAndSwap(i, 0, 1); }
};
void StartThreads(std::vector<std::unique_ptr<Thread>>* threads,
MessageHandler* handler) {
for (int i = 0; i < kNumThreads; ++i) {
std::unique_ptr<Thread> thread(Thread::Create());
thread->Start();
thread->Post(RTC_FROM_HERE, handler);
threads->push_back(std::move(thread));
}
}
} // namespace
TEST(AtomicOpsTest, Simple) {
int value = 0;
EXPECT_EQ(1, AtomicOps::Increment(&value));
EXPECT_EQ(1, value);
EXPECT_EQ(2, AtomicOps::Increment(&value));
EXPECT_EQ(2, value);
EXPECT_EQ(1, AtomicOps::Decrement(&value));
EXPECT_EQ(1, value);
EXPECT_EQ(0, AtomicOps::Decrement(&value));
EXPECT_EQ(0, value);
}
TEST(AtomicOpsTest, SimplePtr) {
class Foo {};
Foo* volatile foo = nullptr;
std::unique_ptr<Foo> a(new Foo());
std::unique_ptr<Foo> b(new Foo());
// Reading the initial value should work as expected.
EXPECT_TRUE(rtc::AtomicOps::AcquireLoadPtr(&foo) == nullptr);
// Setting using compare and swap should work.
EXPECT_TRUE(rtc::AtomicOps::CompareAndSwapPtr(
&foo, static_cast<Foo*>(nullptr), a.get()) == nullptr);
EXPECT_TRUE(rtc::AtomicOps::AcquireLoadPtr(&foo) == a.get());
// Setting another value but with the wrong previous pointer should fail
// (remain a).
EXPECT_TRUE(rtc::AtomicOps::CompareAndSwapPtr(
&foo, static_cast<Foo*>(nullptr), b.get()) == a.get());
EXPECT_TRUE(rtc::AtomicOps::AcquireLoadPtr(&foo) == a.get());
// Replacing a with b should work.
EXPECT_TRUE(rtc::AtomicOps::CompareAndSwapPtr(&foo, a.get(), b.get()) ==
a.get());
EXPECT_TRUE(rtc::AtomicOps::AcquireLoadPtr(&foo) == b.get());
}
TEST(AtomicOpsTest, Increment) {
// Create and start lots of threads.
AtomicOpRunner<IncrementOp, UniqueValueVerifier> runner(0);
std::vector<std::unique_ptr<Thread>> threads;
StartThreads(&threads, &runner);
runner.SetExpectedThreadCount(kNumThreads);
// Release the hounds!
EXPECT_TRUE(runner.Run());
EXPECT_EQ(kOperationsToRun * kNumThreads, runner.shared_value());
}
TEST(AtomicOpsTest, Decrement) {
// Create and start lots of threads.
AtomicOpRunner<DecrementOp, UniqueValueVerifier> runner(kOperationsToRun *
kNumThreads);
std::vector<std::unique_ptr<Thread>> threads;
StartThreads(&threads, &runner);
runner.SetExpectedThreadCount(kNumThreads);
// Release the hounds!
EXPECT_TRUE(runner.Run());
EXPECT_EQ(0, runner.shared_value());
}
TEST(AtomicOpsTest, CompareAndSwap) {
// Create and start lots of threads.
AtomicOpRunner<CompareAndSwapOp, CompareAndSwapVerifier> runner(0);
std::vector<std::unique_ptr<Thread>> threads;
StartThreads(&threads, &runner);
runner.SetExpectedThreadCount(kNumThreads);
// Release the hounds!
EXPECT_TRUE(runner.Run());
EXPECT_EQ(1, runner.shared_value());
}
TEST(RecursiveCriticalSectionTest, Basic) {
// Create and start lots of threads.
LockRunner<CriticalSectionLock> runner;
std::vector<std::unique_ptr<Thread>> threads;
StartThreads(&threads, &runner);
runner.SetExpectedThreadCount(kNumThreads);
// Release the hounds!
EXPECT_TRUE(runner.Run());
EXPECT_EQ(0, runner.shared_value());
}
class PerfTestData {
public:
PerfTestData(int expected_count, Event* event)
: cache_line_barrier_1_(),
cache_line_barrier_2_(),
expected_count_(expected_count),
event_(event) {
cache_line_barrier_1_[0]++; // Avoid 'is not used'.
cache_line_barrier_2_[0]++; // Avoid 'is not used'.
}
~PerfTestData() {}
void AddToCounter(int add) {
rtc::CritScope cs(&lock_);
my_counter_ += add;
if (my_counter_ == expected_count_)
event_->Set();
}
int64_t total() const {
// Assume that only one thread is running now.
return my_counter_;
}
private:
uint8_t cache_line_barrier_1_[64];
RecursiveCriticalSection lock_;
uint8_t cache_line_barrier_2_[64];
int64_t my_counter_ = 0;
const int expected_count_;
Event* const event_;
};
class PerfTestThread {
public:
PerfTestThread() : thread_(&ThreadFunc, this, "CsPerf") {}
void Start(PerfTestData* data, int repeats, int id) {
RTC_DCHECK(!thread_.IsRunning());
RTC_DCHECK(!data_);
data_ = data;
repeats_ = repeats;
my_id_ = id;
thread_.Start();
}
void Stop() {
RTC_DCHECK(thread_.IsRunning());
RTC_DCHECK(data_);
thread_.Stop();
repeats_ = 0;
data_ = nullptr;
my_id_ = 0;
}
private:
static void ThreadFunc(void* param) {
PerfTestThread* me = static_cast<PerfTestThread*>(param);
for (int i = 0; i < me->repeats_; ++i)
me->data_->AddToCounter(me->my_id_);
}
PlatformThread thread_;
PerfTestData* data_ = nullptr;
int repeats_ = 0;
int my_id_ = 0;
};
// Comparison of output of this test as tested on a MacBook Pro, 13-inch,
// 2017, 3,5 GHz Intel Core i7, 16 GB 2133 MHz LPDDR3,
// running macOS Mojave, 10.14.3.
//
// Native mutex implementation using fair policy (previously macOS default):
// Approximate CPU usage:
// real 4m54.612s
// user 1m20.575s
// sys 3m48.872s
// Unit test output:
// [ OK ] RecursiveCriticalSectionTest.Performance (294375 ms)
//
// Native mutex implementation using first fit policy (current macOS default):
// Approximate CPU usage:
// real 0m11.535s
// user 0m12.738s
// sys 0m31.207s
// Unit test output:
// [ OK ] RecursiveCriticalSectionTest.Performance (11444 ms)
//
// Special partially spin lock based implementation:
// Approximate CPU usage:
// real 0m2.113s
// user 0m3.014s
// sys 0m4.495s
// Unit test output:
// [ OK ] RecursiveCriticalSectionTest.Performance (1885 ms)
//
// The test is disabled by default to avoid unecessarily loading the bots.
TEST(RecursiveCriticalSectionTest, DISABLED_Performance) {
PerfTestThread threads[8];
Event event;
static const int kThreadRepeats = 10000000;
static const int kExpectedCount = kThreadRepeats * arraysize(threads);
PerfTestData test_data(kExpectedCount, &event);
for (auto& t : threads)
t.Start(&test_data, kThreadRepeats, 1);
event.Wait(Event::kForever);
for (auto& t : threads)
t.Stop();
}
} // namespace rtc