webrtc/modules/video_coding/timing.cc
Johannes Kron 23bfff3383 Change default parameters for the low-latency video pipeline
min_pacing:8ms, to avoid the situation where bursts of frames are sent
to the decoder at once due to network jitter. The bursts of frames
caused the queues further down in the processing to be full and
therefore drop all frames.

max_decode_queue_size:8, in the event that too many frames have piled
up, do as before and send all frames to the decoder to avoid building
up any latency.

These setting only affect the low-latency video pipeline that is enabled
by setting the playout RTP header extension to min=0ms, max>0ms.

Bug: chromium:1138888
Change-Id: I8154bf3efe7450b770da8387f8fb6b23f6be26bd
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/233220
Commit-Queue: Johannes Kron <kron@webrtc.org>
Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#35119}
2021-09-29 09:53:17 +00:00

288 lines
10 KiB
C++

/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/timing.h"
#include <algorithm>
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/time/timestamp_extrapolator.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
// Default pacing that is used for the low-latency renderer path.
constexpr TimeDelta kZeroPlayoutDelayDefaultMinPacing = TimeDelta::Millis(8);
} // namespace
VCMTiming::VCMTiming(Clock* clock)
: clock_(clock),
ts_extrapolator_(std::make_unique<TimestampExtrapolator>(
clock_->TimeInMilliseconds())),
codec_timer_(std::make_unique<VCMCodecTimer>()),
render_delay_ms_(kDefaultRenderDelayMs),
min_playout_delay_ms_(0),
max_playout_delay_ms_(10000),
jitter_delay_ms_(0),
current_delay_ms_(0),
prev_frame_timestamp_(0),
timing_frame_info_(),
num_decoded_frames_(0),
low_latency_renderer_enabled_("enabled", true),
zero_playout_delay_min_pacing_("min_pacing",
kZeroPlayoutDelayDefaultMinPacing),
last_decode_scheduled_ts_(0) {
ParseFieldTrial({&low_latency_renderer_enabled_},
field_trial::FindFullName("WebRTC-LowLatencyRenderer"));
ParseFieldTrial({&zero_playout_delay_min_pacing_},
field_trial::FindFullName("WebRTC-ZeroPlayoutDelay"));
}
void VCMTiming::Reset() {
MutexLock lock(&mutex_);
ts_extrapolator_->Reset(clock_->TimeInMilliseconds());
codec_timer_ = std::make_unique<VCMCodecTimer>();
render_delay_ms_ = kDefaultRenderDelayMs;
min_playout_delay_ms_ = 0;
jitter_delay_ms_ = 0;
current_delay_ms_ = 0;
prev_frame_timestamp_ = 0;
}
void VCMTiming::set_render_delay(int render_delay_ms) {
MutexLock lock(&mutex_);
render_delay_ms_ = render_delay_ms;
}
void VCMTiming::set_min_playout_delay(int min_playout_delay_ms) {
MutexLock lock(&mutex_);
min_playout_delay_ms_ = min_playout_delay_ms;
}
int VCMTiming::min_playout_delay() {
MutexLock lock(&mutex_);
return min_playout_delay_ms_;
}
void VCMTiming::set_max_playout_delay(int max_playout_delay_ms) {
MutexLock lock(&mutex_);
max_playout_delay_ms_ = max_playout_delay_ms;
}
int VCMTiming::max_playout_delay() {
MutexLock lock(&mutex_);
return max_playout_delay_ms_;
}
void VCMTiming::SetJitterDelay(int jitter_delay_ms) {
MutexLock lock(&mutex_);
if (jitter_delay_ms != jitter_delay_ms_) {
jitter_delay_ms_ = jitter_delay_ms;
// When in initial state, set current delay to minimum delay.
if (current_delay_ms_ == 0) {
current_delay_ms_ = jitter_delay_ms_;
}
}
}
void VCMTiming::UpdateCurrentDelay(uint32_t frame_timestamp) {
MutexLock lock(&mutex_);
int target_delay_ms = TargetDelayInternal();
if (current_delay_ms_ == 0) {
// Not initialized, set current delay to target.
current_delay_ms_ = target_delay_ms;
} else if (target_delay_ms != current_delay_ms_) {
int64_t delay_diff_ms =
static_cast<int64_t>(target_delay_ms) - current_delay_ms_;
// Never change the delay with more than 100 ms every second. If we're
// changing the delay in too large steps we will get noticeable freezes. By
// limiting the change we can increase the delay in smaller steps, which
// will be experienced as the video is played in slow motion. When lowering
// the delay the video will be played at a faster pace.
int64_t max_change_ms = 0;
if (frame_timestamp < 0x0000ffff && prev_frame_timestamp_ > 0xffff0000) {
// wrap
max_change_ms = kDelayMaxChangeMsPerS *
(frame_timestamp + (static_cast<int64_t>(1) << 32) -
prev_frame_timestamp_) /
90000;
} else {
max_change_ms = kDelayMaxChangeMsPerS *
(frame_timestamp - prev_frame_timestamp_) / 90000;
}
if (max_change_ms <= 0) {
// Any changes less than 1 ms are truncated and will be postponed.
// Negative change will be due to reordering and should be ignored.
return;
}
delay_diff_ms = std::max(delay_diff_ms, -max_change_ms);
delay_diff_ms = std::min(delay_diff_ms, max_change_ms);
current_delay_ms_ = current_delay_ms_ + delay_diff_ms;
}
prev_frame_timestamp_ = frame_timestamp;
}
void VCMTiming::UpdateCurrentDelay(int64_t render_time_ms,
int64_t actual_decode_time_ms) {
MutexLock lock(&mutex_);
uint32_t target_delay_ms = TargetDelayInternal();
int64_t delayed_ms =
actual_decode_time_ms -
(render_time_ms - RequiredDecodeTimeMs() - render_delay_ms_);
if (delayed_ms < 0) {
return;
}
if (current_delay_ms_ + delayed_ms <= target_delay_ms) {
current_delay_ms_ += delayed_ms;
} else {
current_delay_ms_ = target_delay_ms;
}
}
void VCMTiming::StopDecodeTimer(uint32_t /*time_stamp*/,
int32_t decode_time_ms,
int64_t now_ms,
int64_t /*render_time_ms*/) {
StopDecodeTimer(decode_time_ms, now_ms);
}
void VCMTiming::StopDecodeTimer(int32_t decode_time_ms, int64_t now_ms) {
MutexLock lock(&mutex_);
codec_timer_->AddTiming(decode_time_ms, now_ms);
RTC_DCHECK_GE(decode_time_ms, 0);
++num_decoded_frames_;
}
void VCMTiming::IncomingTimestamp(uint32_t time_stamp, int64_t now_ms) {
MutexLock lock(&mutex_);
ts_extrapolator_->Update(now_ms, time_stamp);
}
int64_t VCMTiming::RenderTimeMs(uint32_t frame_timestamp,
int64_t now_ms) const {
MutexLock lock(&mutex_);
return RenderTimeMsInternal(frame_timestamp, now_ms);
}
void VCMTiming::SetLastDecodeScheduledTimestamp(
int64_t last_decode_scheduled_ts) {
MutexLock lock(&mutex_);
last_decode_scheduled_ts_ = last_decode_scheduled_ts;
}
int64_t VCMTiming::RenderTimeMsInternal(uint32_t frame_timestamp,
int64_t now_ms) const {
constexpr int kLowLatencyRendererMaxPlayoutDelayMs = 500;
if (min_playout_delay_ms_ == 0 &&
(max_playout_delay_ms_ == 0 ||
(low_latency_renderer_enabled_ &&
max_playout_delay_ms_ <= kLowLatencyRendererMaxPlayoutDelayMs))) {
// Render as soon as possible or with low-latency renderer algorithm.
return 0;
}
// Note that TimestampExtrapolator::ExtrapolateLocalTime is not a const
// method; it mutates the object's wraparound state.
int64_t estimated_complete_time_ms =
ts_extrapolator_->ExtrapolateLocalTime(frame_timestamp);
if (estimated_complete_time_ms == -1) {
estimated_complete_time_ms = now_ms;
}
// Make sure the actual delay stays in the range of `min_playout_delay_ms_`
// and `max_playout_delay_ms_`.
int actual_delay = std::max(current_delay_ms_, min_playout_delay_ms_);
actual_delay = std::min(actual_delay, max_playout_delay_ms_);
return estimated_complete_time_ms + actual_delay;
}
int VCMTiming::RequiredDecodeTimeMs() const {
const int decode_time_ms = codec_timer_->RequiredDecodeTimeMs();
RTC_DCHECK_GE(decode_time_ms, 0);
return decode_time_ms;
}
int64_t VCMTiming::MaxWaitingTime(int64_t render_time_ms,
int64_t now_ms,
bool too_many_frames_queued) const {
MutexLock lock(&mutex_);
if (render_time_ms == 0 && zero_playout_delay_min_pacing_->us() > 0 &&
min_playout_delay_ms_ == 0 && max_playout_delay_ms_ > 0) {
// `render_time_ms` == 0 indicates that the frame should be decoded and
// rendered as soon as possible. However, the decoder can be choked if too
// many frames are sent at once. Therefore, limit the interframe delay to
// |zero_playout_delay_min_pacing_| unless too many frames are queued in
// which case the frames are sent to the decoder at once.
if (too_many_frames_queued) {
return 0;
}
int64_t earliest_next_decode_start_time =
last_decode_scheduled_ts_ + zero_playout_delay_min_pacing_->ms();
int64_t max_wait_time_ms = now_ms >= earliest_next_decode_start_time
? 0
: earliest_next_decode_start_time - now_ms;
return max_wait_time_ms;
}
return render_time_ms - now_ms - RequiredDecodeTimeMs() - render_delay_ms_;
}
int VCMTiming::TargetVideoDelay() const {
MutexLock lock(&mutex_);
return TargetDelayInternal();
}
int VCMTiming::TargetDelayInternal() const {
return std::max(min_playout_delay_ms_,
jitter_delay_ms_ + RequiredDecodeTimeMs() + render_delay_ms_);
}
bool VCMTiming::GetTimings(int* max_decode_ms,
int* current_delay_ms,
int* target_delay_ms,
int* jitter_buffer_ms,
int* min_playout_delay_ms,
int* render_delay_ms) const {
MutexLock lock(&mutex_);
*max_decode_ms = RequiredDecodeTimeMs();
*current_delay_ms = current_delay_ms_;
*target_delay_ms = TargetDelayInternal();
*jitter_buffer_ms = jitter_delay_ms_;
*min_playout_delay_ms = min_playout_delay_ms_;
*render_delay_ms = render_delay_ms_;
return (num_decoded_frames_ > 0);
}
void VCMTiming::SetTimingFrameInfo(const TimingFrameInfo& info) {
MutexLock lock(&mutex_);
timing_frame_info_.emplace(info);
}
absl::optional<TimingFrameInfo> VCMTiming::GetTimingFrameInfo() {
MutexLock lock(&mutex_);
return timing_frame_info_;
}
void VCMTiming::SetMaxCompositionDelayInFrames(
absl::optional<int> max_composition_delay_in_frames) {
MutexLock lock(&mutex_);
max_composition_delay_in_frames_ = max_composition_delay_in_frames;
}
absl::optional<int> VCMTiming::MaxCompositionDelayInFrames() const {
MutexLock lock(&mutex_);
return max_composition_delay_in_frames_;
}
} // namespace webrtc