webrtc/modules/congestion_controller/goog_cc/probe_controller.cc
Per K cc92b6e1bd Add ProbeController::EnableRepeatedInitialProbing
This adds a new mode to the ProbeController that sends probes every
second the first 5seconds. Intented usage is before normal media has
started flowing. If enabled, the max allocated bitrat is ignored during
these initial probes.
The purpose is to have a more accurate estimate at the beginning of a
call.
The cl also removes ProbeController::SetFirstProbeToMaxBitrate.

Bug: webrtc:14928
Change-Id: I04feefb2f1b82ff38b35ee2be810f9119c53536a
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/349924
Reviewed-by: Diep Bui <diepbp@webrtc.org>
Commit-Queue: Per Kjellander <perkj@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#42252}
2024-05-07 19:37:23 +00:00

623 lines
24 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/goog_cc/probe_controller.h"
#include <algorithm>
#include <cstdint>
#include <initializer_list>
#include <memory>
#include <vector>
#include "absl/strings/match.h"
#include "absl/types/optional.h"
#include "api/field_trials_view.h"
#include "api/rtc_event_log/rtc_event_log.h"
#include "api/transport/network_types.h"
#include "api/units/data_rate.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "logging/rtc_event_log/events/rtc_event_probe_cluster_created.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
// Maximum waiting time from the time of initiating probing to getting
// the measured results back.
constexpr TimeDelta kMaxWaitingTimeForProbingResult = TimeDelta::Seconds(1);
// Default probing bitrate limit. Applied only when the application didn't
// specify max bitrate.
constexpr DataRate kDefaultMaxProbingBitrate = DataRate::KilobitsPerSec(5000);
// If the bitrate drops to a factor `kBitrateDropThreshold` or lower
// and we recover within `kBitrateDropTimeoutMs`, then we'll send
// a probe at a fraction `kProbeFractionAfterDrop` of the original bitrate.
constexpr double kBitrateDropThreshold = 0.66;
constexpr TimeDelta kBitrateDropTimeout = TimeDelta::Seconds(5);
constexpr double kProbeFractionAfterDrop = 0.85;
// Timeout for probing after leaving ALR. If the bitrate drops significantly,
// (as determined by the delay based estimator) and we leave ALR, then we will
// send a probe if we recover within `kLeftAlrTimeoutMs` ms.
constexpr TimeDelta kAlrEndedTimeout = TimeDelta::Seconds(3);
// The expected uncertainty of probe result (as a fraction of the target probe
// This is a limit on how often probing can be done when there is a BW
// drop detected in ALR.
constexpr TimeDelta kMinTimeBetweenAlrProbes = TimeDelta::Seconds(5);
// bitrate). Used to avoid probing if the probe bitrate is close to our current
// estimate.
constexpr double kProbeUncertainty = 0.05;
// Use probing to recover faster after large bitrate estimate drops.
constexpr char kBweRapidRecoveryExperiment[] =
"WebRTC-BweRapidRecoveryExperiment";
void MaybeLogProbeClusterCreated(RtcEventLog* event_log,
const ProbeClusterConfig& probe) {
RTC_DCHECK(event_log);
if (!event_log) {
return;
}
DataSize min_data_size = probe.target_data_rate * probe.target_duration;
event_log->Log(std::make_unique<RtcEventProbeClusterCreated>(
probe.id, probe.target_data_rate.bps(), probe.target_probe_count,
min_data_size.bytes()));
}
} // namespace
ProbeControllerConfig::ProbeControllerConfig(
const FieldTrialsView* key_value_config)
: first_exponential_probe_scale("p1", 3.0),
second_exponential_probe_scale("p2", 6.0),
further_exponential_probe_scale("step_size", 2),
further_probe_threshold("further_probe_threshold", 0.7),
abort_further_probe_if_max_lower_than_current("abort_further", false),
repeated_initial_probing_duration("initial_probing_duration",
TimeDelta::Seconds(5)),
alr_probing_interval("alr_interval", TimeDelta::Seconds(5)),
alr_probe_scale("alr_scale", 2),
network_state_estimate_probing_interval("network_state_interval",
TimeDelta::PlusInfinity()),
probe_if_estimate_lower_than_network_state_estimate_ratio(
"est_lower_than_network_ratio",
0),
estimate_lower_than_network_state_estimate_probing_interval(
"est_lower_than_network_interval",
TimeDelta::Seconds(3)),
network_state_probe_scale("network_state_scale", 1.0),
network_state_probe_duration("network_state_probe_duration",
TimeDelta::Millis(15)),
probe_on_max_allocated_bitrate_change("probe_max_allocation", true),
first_allocation_probe_scale("alloc_p1", 1),
second_allocation_probe_scale("alloc_p2", 2),
allocation_probe_limit_by_current_scale("alloc_current_bwe_limit"),
min_probe_packets_sent("min_probe_packets_sent", 5),
min_probe_duration("min_probe_duration", TimeDelta::Millis(15)),
loss_limited_probe_scale("loss_limited_scale", 1.5),
skip_if_estimate_larger_than_fraction_of_max(
"skip_if_est_larger_than_fraction_of_max",
0.0) {
ParseFieldTrial({&first_exponential_probe_scale,
&second_exponential_probe_scale,
&further_exponential_probe_scale,
&further_probe_threshold,
&abort_further_probe_if_max_lower_than_current,
&repeated_initial_probing_duration,
&alr_probing_interval,
&alr_probe_scale,
&probe_on_max_allocated_bitrate_change,
&first_allocation_probe_scale,
&second_allocation_probe_scale,
&allocation_probe_limit_by_current_scale,
&min_probe_duration,
&network_state_estimate_probing_interval,
&probe_if_estimate_lower_than_network_state_estimate_ratio,
&estimate_lower_than_network_state_estimate_probing_interval,
&network_state_probe_scale,
&network_state_probe_duration,
&min_probe_packets_sent,
&loss_limited_probe_scale,
&skip_if_estimate_larger_than_fraction_of_max},
key_value_config->Lookup("WebRTC-Bwe-ProbingConfiguration"));
// Specialized keys overriding subsets of WebRTC-Bwe-ProbingConfiguration
ParseFieldTrial(
{&first_exponential_probe_scale, &second_exponential_probe_scale},
key_value_config->Lookup("WebRTC-Bwe-InitialProbing"));
ParseFieldTrial({&further_exponential_probe_scale, &further_probe_threshold},
key_value_config->Lookup("WebRTC-Bwe-ExponentialProbing"));
ParseFieldTrial(
{&alr_probing_interval, &alr_probe_scale, &loss_limited_probe_scale},
key_value_config->Lookup("WebRTC-Bwe-AlrProbing"));
ParseFieldTrial(
{&first_allocation_probe_scale, &second_allocation_probe_scale,
&allocation_probe_limit_by_current_scale},
key_value_config->Lookup("WebRTC-Bwe-AllocationProbing"));
ParseFieldTrial({&min_probe_packets_sent, &min_probe_duration},
key_value_config->Lookup("WebRTC-Bwe-ProbingBehavior"));
}
ProbeControllerConfig::ProbeControllerConfig(const ProbeControllerConfig&) =
default;
ProbeControllerConfig::~ProbeControllerConfig() = default;
ProbeController::ProbeController(const FieldTrialsView* key_value_config,
RtcEventLog* event_log)
: network_available_(false),
enable_periodic_alr_probing_(false),
in_rapid_recovery_experiment_(absl::StartsWith(
key_value_config->Lookup(kBweRapidRecoveryExperiment),
"Enabled")),
event_log_(event_log),
config_(ProbeControllerConfig(key_value_config)) {
Reset(Timestamp::Zero());
}
ProbeController::~ProbeController() {}
std::vector<ProbeClusterConfig> ProbeController::SetBitrates(
DataRate min_bitrate,
DataRate start_bitrate,
DataRate max_bitrate,
Timestamp at_time) {
if (start_bitrate > DataRate::Zero()) {
start_bitrate_ = start_bitrate;
estimated_bitrate_ = start_bitrate;
} else if (start_bitrate_.IsZero()) {
start_bitrate_ = min_bitrate;
}
// The reason we use the variable `old_max_bitrate_pbs` is because we
// need to set `max_bitrate_` before we call InitiateProbing.
DataRate old_max_bitrate = max_bitrate_;
max_bitrate_ =
max_bitrate.IsFinite() ? max_bitrate : kDefaultMaxProbingBitrate;
switch (state_) {
case State::kInit:
if (network_available_)
return InitiateExponentialProbing(at_time);
break;
case State::kWaitingForProbingResult:
break;
case State::kProbingComplete:
// If the new max bitrate is higher than both the old max bitrate and the
// estimate then initiate probing.
if (!estimated_bitrate_.IsZero() && old_max_bitrate < max_bitrate_ &&
estimated_bitrate_ < max_bitrate_) {
return InitiateProbing(at_time, {max_bitrate_}, false);
}
break;
}
return std::vector<ProbeClusterConfig>();
}
std::vector<ProbeClusterConfig> ProbeController::OnMaxTotalAllocatedBitrate(
DataRate max_total_allocated_bitrate,
Timestamp at_time) {
const bool in_alr = alr_start_time_.has_value();
const bool allow_allocation_probe = in_alr;
if (config_.probe_on_max_allocated_bitrate_change &&
state_ == State::kProbingComplete &&
max_total_allocated_bitrate != max_total_allocated_bitrate_ &&
estimated_bitrate_ < max_bitrate_ &&
estimated_bitrate_ < max_total_allocated_bitrate &&
allow_allocation_probe) {
max_total_allocated_bitrate_ = max_total_allocated_bitrate;
if (!config_.first_allocation_probe_scale)
return std::vector<ProbeClusterConfig>();
DataRate first_probe_rate = max_total_allocated_bitrate *
config_.first_allocation_probe_scale.Value();
DataRate current_bwe_limit =
!config_.allocation_probe_limit_by_current_scale
? DataRate::PlusInfinity()
: estimated_bitrate_ *
config_.allocation_probe_limit_by_current_scale.Value();
bool limited_by_current_bwe = current_bwe_limit < first_probe_rate;
if (limited_by_current_bwe) {
first_probe_rate = current_bwe_limit;
}
std::vector<DataRate> probes = {first_probe_rate};
if (!limited_by_current_bwe && config_.second_allocation_probe_scale) {
DataRate second_probe_rate =
max_total_allocated_bitrate *
config_.second_allocation_probe_scale.Value();
limited_by_current_bwe = current_bwe_limit < second_probe_rate;
if (limited_by_current_bwe) {
second_probe_rate = current_bwe_limit;
}
if (second_probe_rate > first_probe_rate)
probes.push_back(second_probe_rate);
}
bool allow_further_probing = limited_by_current_bwe;
return InitiateProbing(at_time, probes, allow_further_probing);
}
max_total_allocated_bitrate_ = max_total_allocated_bitrate;
return std::vector<ProbeClusterConfig>();
}
std::vector<ProbeClusterConfig> ProbeController::OnNetworkAvailability(
NetworkAvailability msg) {
network_available_ = msg.network_available;
if (!network_available_ && state_ == State::kWaitingForProbingResult) {
state_ = State::kProbingComplete;
min_bitrate_to_probe_further_ = DataRate::PlusInfinity();
}
if (network_available_ && state_ == State::kInit && !start_bitrate_.IsZero())
return InitiateExponentialProbing(msg.at_time);
return std::vector<ProbeClusterConfig>();
}
void ProbeController::UpdateState(State new_state) {
switch (new_state) {
case State::kInit:
state_ = State::kInit;
break;
case State::kWaitingForProbingResult:
state_ = State::kWaitingForProbingResult;
break;
case State::kProbingComplete:
state_ = State::kProbingComplete;
waiting_for_initial_probe_result_ = false;
min_bitrate_to_probe_further_ = DataRate::PlusInfinity();
break;
}
}
std::vector<ProbeClusterConfig> ProbeController::InitiateExponentialProbing(
Timestamp at_time) {
RTC_DCHECK(network_available_);
RTC_DCHECK(state_ == State::kInit);
RTC_DCHECK_GT(start_bitrate_, DataRate::Zero());
// When probing at 1.8 Mbps ( 6x 300), this represents a threshold of
// 1.2 Mbps to continue probing.
std::vector<DataRate> probes = {config_.first_exponential_probe_scale *
start_bitrate_};
if (config_.second_exponential_probe_scale &&
config_.second_exponential_probe_scale.GetOptional().value() > 0) {
probes.push_back(config_.second_exponential_probe_scale.Value() *
start_bitrate_);
}
waiting_for_initial_probe_result_ = true;
if (repeated_initial_probing_enabled_) {
last_allowed_repeated_initial_probe_ =
at_time + config_.repeated_initial_probing_duration;
RTC_LOG(LS_INFO) << "Repeated initial probing enabled, last allowed probe: "
<< last_allowed_repeated_initial_probe_
<< "now: " << at_time;
}
return InitiateProbing(at_time, probes, true);
}
std::vector<ProbeClusterConfig> ProbeController::SetEstimatedBitrate(
DataRate bitrate,
BandwidthLimitedCause bandwidth_limited_cause,
Timestamp at_time) {
bandwidth_limited_cause_ = bandwidth_limited_cause;
if (bitrate < kBitrateDropThreshold * estimated_bitrate_) {
time_of_last_large_drop_ = at_time;
bitrate_before_last_large_drop_ = estimated_bitrate_;
}
estimated_bitrate_ = bitrate;
if (state_ == State::kWaitingForProbingResult) {
// Continue probing if probing results indicate channel has greater
// capacity unless we already reached the needed bitrate.
if (config_.abort_further_probe_if_max_lower_than_current &&
(bitrate > max_bitrate_ ||
(!max_total_allocated_bitrate_.IsZero() &&
!(waiting_for_initial_probe_result_ &&
repeated_initial_probing_enabled_) &&
bitrate > 2 * max_total_allocated_bitrate_))) {
// No need to continue probing.
min_bitrate_to_probe_further_ = DataRate::PlusInfinity();
}
DataRate network_state_estimate_probe_further_limit =
config_.network_state_estimate_probing_interval->IsFinite() &&
network_estimate_
? network_estimate_->link_capacity_upper *
config_.further_probe_threshold
: DataRate::PlusInfinity();
RTC_LOG(LS_INFO) << "Measured bitrate: " << bitrate
<< " Minimum to probe further: "
<< min_bitrate_to_probe_further_ << " upper limit: "
<< network_state_estimate_probe_further_limit;
if (bitrate > min_bitrate_to_probe_further_ &&
bitrate <= network_state_estimate_probe_further_limit) {
return InitiateProbing(
at_time, {config_.further_exponential_probe_scale * bitrate}, true);
}
}
return {};
}
void ProbeController::EnablePeriodicAlrProbing(bool enable) {
enable_periodic_alr_probing_ = enable;
}
void ProbeController::EnableRepeatedInitialProbing(bool enable) {
repeated_initial_probing_enabled_ = enable;
}
void ProbeController::SetAlrStartTimeMs(
absl::optional<int64_t> alr_start_time_ms) {
if (alr_start_time_ms) {
alr_start_time_ = Timestamp::Millis(*alr_start_time_ms);
} else {
alr_start_time_ = absl::nullopt;
}
}
void ProbeController::SetAlrEndedTimeMs(int64_t alr_end_time_ms) {
alr_end_time_.emplace(Timestamp::Millis(alr_end_time_ms));
}
std::vector<ProbeClusterConfig> ProbeController::RequestProbe(
Timestamp at_time) {
// Called once we have returned to normal state after a large drop in
// estimated bandwidth. The current response is to initiate a single probe
// session (if not already probing) at the previous bitrate.
//
// If the probe session fails, the assumption is that this drop was a
// real one from a competing flow or a network change.
bool in_alr = alr_start_time_.has_value();
bool alr_ended_recently =
(alr_end_time_.has_value() &&
at_time - alr_end_time_.value() < kAlrEndedTimeout);
if (in_alr || alr_ended_recently || in_rapid_recovery_experiment_) {
if (state_ == State::kProbingComplete) {
DataRate suggested_probe =
kProbeFractionAfterDrop * bitrate_before_last_large_drop_;
DataRate min_expected_probe_result =
(1 - kProbeUncertainty) * suggested_probe;
TimeDelta time_since_drop = at_time - time_of_last_large_drop_;
TimeDelta time_since_probe = at_time - last_bwe_drop_probing_time_;
if (min_expected_probe_result > estimated_bitrate_ &&
time_since_drop < kBitrateDropTimeout &&
time_since_probe > kMinTimeBetweenAlrProbes) {
RTC_LOG(LS_INFO) << "Detected big bandwidth drop, start probing.";
// Track how often we probe in response to bandwidth drop in ALR.
RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.BWE.BweDropProbingIntervalInS",
(at_time - last_bwe_drop_probing_time_).seconds());
last_bwe_drop_probing_time_ = at_time;
return InitiateProbing(at_time, {suggested_probe}, false);
}
}
}
return std::vector<ProbeClusterConfig>();
}
void ProbeController::SetNetworkStateEstimate(
webrtc::NetworkStateEstimate estimate) {
network_estimate_ = estimate;
}
void ProbeController::Reset(Timestamp at_time) {
bandwidth_limited_cause_ = BandwidthLimitedCause::kDelayBasedLimited;
state_ = State::kInit;
waiting_for_initial_probe_result_ = false;
min_bitrate_to_probe_further_ = DataRate::PlusInfinity();
time_last_probing_initiated_ = Timestamp::Zero();
estimated_bitrate_ = DataRate::Zero();
network_estimate_ = absl::nullopt;
start_bitrate_ = DataRate::Zero();
max_bitrate_ = kDefaultMaxProbingBitrate;
Timestamp now = at_time;
last_bwe_drop_probing_time_ = now;
alr_end_time_.reset();
time_of_last_large_drop_ = now;
bitrate_before_last_large_drop_ = DataRate::Zero();
max_total_allocated_bitrate_ = DataRate::Zero();
}
bool ProbeController::TimeForAlrProbe(Timestamp at_time) const {
if (enable_periodic_alr_probing_ && alr_start_time_) {
Timestamp next_probe_time =
std::max(*alr_start_time_, time_last_probing_initiated_) +
config_.alr_probing_interval;
return at_time >= next_probe_time;
}
return false;
}
bool ProbeController::TimeForNetworkStateProbe(Timestamp at_time) const {
if (!network_estimate_ ||
network_estimate_->link_capacity_upper.IsInfinite()) {
return false;
}
bool probe_due_to_low_estimate =
bandwidth_limited_cause_ == BandwidthLimitedCause::kDelayBasedLimited &&
estimated_bitrate_ <
config_.probe_if_estimate_lower_than_network_state_estimate_ratio *
network_estimate_->link_capacity_upper;
if (probe_due_to_low_estimate &&
config_.estimate_lower_than_network_state_estimate_probing_interval
->IsFinite()) {
Timestamp next_probe_time =
time_last_probing_initiated_ +
config_.estimate_lower_than_network_state_estimate_probing_interval;
return at_time >= next_probe_time;
}
bool periodic_probe =
estimated_bitrate_ < network_estimate_->link_capacity_upper;
if (periodic_probe &&
config_.network_state_estimate_probing_interval->IsFinite()) {
Timestamp next_probe_time = time_last_probing_initiated_ +
config_.network_state_estimate_probing_interval;
return at_time >= next_probe_time;
}
return false;
}
bool ProbeController::TimeForNextRepeatedInitialProbe(Timestamp at_time) const {
if (state_ != State::kWaitingForProbingResult &&
last_allowed_repeated_initial_probe_ > at_time) {
Timestamp next_probe_time =
time_last_probing_initiated_ + kMaxWaitingTimeForProbingResult;
if (at_time >= next_probe_time) {
return true;
}
}
return false;
}
std::vector<ProbeClusterConfig> ProbeController::Process(Timestamp at_time) {
if (at_time - time_last_probing_initiated_ >
kMaxWaitingTimeForProbingResult) {
if (state_ == State::kWaitingForProbingResult) {
RTC_LOG(LS_INFO) << "kWaitingForProbingResult: timeout";
UpdateState(State::kProbingComplete);
}
}
if (estimated_bitrate_.IsZero() || state_ != State::kProbingComplete) {
return {};
}
if (TimeForNextRepeatedInitialProbe(at_time)) {
waiting_for_initial_probe_result_ = true;
return InitiateProbing(
at_time, {estimated_bitrate_ * config_.first_exponential_probe_scale},
true);
}
if (TimeForAlrProbe(at_time) || TimeForNetworkStateProbe(at_time)) {
return InitiateProbing(
at_time, {estimated_bitrate_ * config_.alr_probe_scale}, true);
}
return std::vector<ProbeClusterConfig>();
}
std::vector<ProbeClusterConfig> ProbeController::InitiateProbing(
Timestamp now,
std::vector<DataRate> bitrates_to_probe,
bool probe_further) {
if (config_.skip_if_estimate_larger_than_fraction_of_max > 0) {
DataRate network_estimate = network_estimate_
? network_estimate_->link_capacity_upper
: DataRate::PlusInfinity();
DataRate max_probe_rate =
max_total_allocated_bitrate_.IsZero()
? max_bitrate_
: std::min(max_total_allocated_bitrate_, max_bitrate_);
if (std::min(network_estimate, estimated_bitrate_) >
config_.skip_if_estimate_larger_than_fraction_of_max * max_probe_rate) {
UpdateState(State::kProbingComplete);
return {};
}
}
DataRate max_probe_bitrate = max_bitrate_;
if (max_total_allocated_bitrate_ > DataRate::Zero() &&
!(repeated_initial_probing_enabled_ &&
waiting_for_initial_probe_result_)) {
// If a max allocated bitrate has been configured, allow probing up to 2x
// that rate. This allows some overhead to account for bursty streams,
// which otherwise would have to ramp up when the overshoot is already in
// progress.
// It also avoids minor quality reduction caused by probes often being
// received at slightly less than the target probe bitrate.
max_probe_bitrate =
std::min(max_probe_bitrate, max_total_allocated_bitrate_ * 2);
}
DataRate estimate_capped_bitrate = DataRate::PlusInfinity();
switch (bandwidth_limited_cause_) {
case BandwidthLimitedCause::kRttBasedBackOffHighRtt:
case BandwidthLimitedCause::kDelayBasedLimitedDelayIncreased:
case BandwidthLimitedCause::kLossLimitedBwe:
RTC_LOG(LS_INFO) << "Not sending probe in bandwidth limited state.";
return {};
case BandwidthLimitedCause::kLossLimitedBweIncreasing:
estimate_capped_bitrate =
std::min(max_probe_bitrate,
estimated_bitrate_ * config_.loss_limited_probe_scale);
break;
case BandwidthLimitedCause::kDelayBasedLimited:
break;
default:
break;
}
if (config_.network_state_estimate_probing_interval->IsFinite() &&
network_estimate_ && network_estimate_->link_capacity_upper.IsFinite()) {
if (network_estimate_->link_capacity_upper.IsZero()) {
RTC_LOG(LS_INFO) << "Not sending probe, Network state estimate is zero";
return {};
}
estimate_capped_bitrate = std::min(
{estimate_capped_bitrate, max_probe_bitrate,
std::max(estimated_bitrate_, network_estimate_->link_capacity_upper *
config_.network_state_probe_scale)});
}
std::vector<ProbeClusterConfig> pending_probes;
for (DataRate bitrate : bitrates_to_probe) {
RTC_DCHECK(!bitrate.IsZero());
bitrate = std::min(bitrate, estimate_capped_bitrate);
if (bitrate > max_probe_bitrate) {
bitrate = max_probe_bitrate;
probe_further = false;
}
ProbeClusterConfig config;
config.at_time = now;
config.target_data_rate = bitrate;
if (network_estimate_ &&
config_.network_state_estimate_probing_interval->IsFinite()) {
config.target_duration = config_.network_state_probe_duration;
} else {
config.target_duration = config_.min_probe_duration;
}
config.target_probe_count = config_.min_probe_packets_sent;
config.id = next_probe_cluster_id_;
next_probe_cluster_id_++;
MaybeLogProbeClusterCreated(event_log_, config);
pending_probes.push_back(config);
}
time_last_probing_initiated_ = now;
if (probe_further) {
UpdateState(State::kWaitingForProbingResult);
// Dont expect probe results to be larger than a fraction of the actual
// probe rate.
min_bitrate_to_probe_further_ =
std::min(estimate_capped_bitrate, (*(bitrates_to_probe.end() - 1))) *
config_.further_probe_threshold;
} else {
UpdateState(State::kProbingComplete);
}
return pending_probes;
}
} // namespace webrtc