mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-17 23:57:59 +01:00

This CL corrects the EchoAudibility and StationarityEstimator code to work properly with multiple channels. It also changes the naming of the FilterDelayBlocks() method to better reflect what it does. The changes have been verified to be bitexact over a large number of recordings. Bug: webrtc:10913 Change-Id: I070b531efcdff4c33f70fd5b37fbb556dcebe5b4 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/156565 Reviewed-by: Sam Zackrisson <saza@webrtc.org> Commit-Queue: Per Åhgren <peah@webrtc.org> Cr-Commit-Position: refs/heads/master@{#29482}
538 lines
21 KiB
C++
538 lines
21 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/aec_state.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
#include "absl/types/optional.h"
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/aec3/aec3_common.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/atomic_ops.h"
|
|
#include "rtc_base/checks.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
constexpr size_t kBlocksSinceConvergencedFilterInit = 10000;
|
|
constexpr size_t kBlocksSinceConsistentEstimateInit = 10000;
|
|
|
|
void ComputeAvgRenderReverb(
|
|
const SpectrumBuffer& spectrum_buffer,
|
|
int delay_blocks,
|
|
float reverb_decay,
|
|
ReverbModel* reverb_model,
|
|
rtc::ArrayView<float, kFftLengthBy2Plus1> reverb_power_spectrum) {
|
|
RTC_DCHECK(reverb_model);
|
|
const size_t num_render_channels = spectrum_buffer.buffer[0].size();
|
|
int idx_at_delay =
|
|
spectrum_buffer.OffsetIndex(spectrum_buffer.read, delay_blocks);
|
|
int idx_past = spectrum_buffer.IncIndex(idx_at_delay);
|
|
|
|
std::array<float, kFftLengthBy2Plus1> X2_data;
|
|
rtc::ArrayView<const float> X2;
|
|
if (num_render_channels > 1) {
|
|
auto sum_channels =
|
|
[](size_t num_render_channels,
|
|
const std::vector<std::vector<float>>& spectrum_band_0,
|
|
rtc::ArrayView<float, kFftLengthBy2Plus1> render_power) {
|
|
std::fill(render_power.begin(), render_power.end(), 0.f);
|
|
for (size_t ch = 0; ch < num_render_channels; ++ch) {
|
|
RTC_DCHECK_EQ(spectrum_band_0[ch].size(), kFftLengthBy2Plus1);
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
|
|
render_power[k] += spectrum_band_0[ch][k];
|
|
}
|
|
}
|
|
};
|
|
sum_channels(num_render_channels, spectrum_buffer.buffer[idx_past],
|
|
X2_data);
|
|
reverb_model->UpdateReverbNoFreqShaping(
|
|
X2_data, /*power_spectrum_scaling=*/1.0f, reverb_decay);
|
|
|
|
sum_channels(num_render_channels, spectrum_buffer.buffer[idx_at_delay],
|
|
X2_data);
|
|
X2 = X2_data;
|
|
} else {
|
|
reverb_model->UpdateReverbNoFreqShaping(
|
|
spectrum_buffer.buffer[idx_past][/*channel=*/0],
|
|
/*power_spectrum_scaling=*/1.0f, reverb_decay);
|
|
|
|
X2 = spectrum_buffer.buffer[idx_at_delay][/*channel=*/0];
|
|
}
|
|
|
|
rtc::ArrayView<const float, kFftLengthBy2Plus1> reverb_power =
|
|
reverb_model->reverb();
|
|
for (size_t k = 0; k < X2.size(); ++k) {
|
|
reverb_power_spectrum[k] = X2[k] + reverb_power[k];
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
int AecState::instance_count_ = 0;
|
|
|
|
void AecState::GetResidualEchoScaling(
|
|
rtc::ArrayView<float> residual_scaling) const {
|
|
bool filter_has_had_time_to_converge;
|
|
if (config_.filter.conservative_initial_phase) {
|
|
filter_has_had_time_to_converge =
|
|
strong_not_saturated_render_blocks_ >= 1.5f * kNumBlocksPerSecond;
|
|
} else {
|
|
filter_has_had_time_to_converge =
|
|
strong_not_saturated_render_blocks_ >= 0.8f * kNumBlocksPerSecond;
|
|
}
|
|
echo_audibility_.GetResidualEchoScaling(filter_has_had_time_to_converge,
|
|
residual_scaling);
|
|
}
|
|
|
|
absl::optional<float> AecState::ErleUncertainty() const {
|
|
if (SaturatedEcho()) {
|
|
return 1.f;
|
|
}
|
|
|
|
return absl::nullopt;
|
|
}
|
|
|
|
AecState::AecState(const EchoCanceller3Config& config,
|
|
size_t num_capture_channels)
|
|
: data_dumper_(
|
|
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
|
|
config_(config),
|
|
initial_state_(config_),
|
|
delay_state_(config_, num_capture_channels),
|
|
transparent_state_(config_),
|
|
filter_quality_state_(config_, num_capture_channels),
|
|
erl_estimator_(2 * kNumBlocksPerSecond),
|
|
erle_estimator_(2 * kNumBlocksPerSecond, config_, num_capture_channels),
|
|
filter_analyzer_(config_, num_capture_channels),
|
|
echo_audibility_(
|
|
config_.echo_audibility.use_stationarity_properties_at_init),
|
|
reverb_model_estimator_(config_, num_capture_channels),
|
|
subtractor_output_analyzers_(num_capture_channels) {}
|
|
|
|
AecState::~AecState() = default;
|
|
|
|
void AecState::HandleEchoPathChange(
|
|
const EchoPathVariability& echo_path_variability) {
|
|
const auto full_reset = [&]() {
|
|
filter_analyzer_.Reset();
|
|
capture_signal_saturation_ = false;
|
|
strong_not_saturated_render_blocks_ = 0;
|
|
blocks_with_active_render_ = 0;
|
|
initial_state_.Reset();
|
|
transparent_state_.Reset();
|
|
erle_estimator_.Reset(true);
|
|
erl_estimator_.Reset();
|
|
filter_quality_state_.Reset();
|
|
};
|
|
|
|
// TODO(peah): Refine the reset scheme according to the type of gain and
|
|
// delay adjustment.
|
|
|
|
if (echo_path_variability.delay_change !=
|
|
EchoPathVariability::DelayAdjustment::kNone) {
|
|
full_reset();
|
|
} else if (echo_path_variability.gain_change) {
|
|
erle_estimator_.Reset(false);
|
|
}
|
|
for (auto& analyzer : subtractor_output_analyzers_) {
|
|
analyzer.HandleEchoPathChange();
|
|
}
|
|
}
|
|
|
|
void AecState::Update(
|
|
const absl::optional<DelayEstimate>& external_delay,
|
|
rtc::ArrayView<const std::vector<std::array<float, kFftLengthBy2Plus1>>>
|
|
adaptive_filter_frequency_responses,
|
|
rtc::ArrayView<const std::vector<float>> adaptive_filter_impulse_responses,
|
|
const RenderBuffer& render_buffer,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> E2_main,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> Y2,
|
|
rtc::ArrayView<const SubtractorOutput> subtractor_output) {
|
|
const size_t num_capture_channels = subtractor_output_analyzers_.size();
|
|
RTC_DCHECK_EQ(num_capture_channels, E2_main.size());
|
|
RTC_DCHECK_EQ(num_capture_channels, Y2.size());
|
|
RTC_DCHECK_EQ(num_capture_channels, subtractor_output.size());
|
|
RTC_DCHECK_EQ(num_capture_channels, subtractor_output_analyzers_.size());
|
|
RTC_DCHECK_EQ(num_capture_channels,
|
|
adaptive_filter_frequency_responses.size());
|
|
RTC_DCHECK_EQ(num_capture_channels, adaptive_filter_impulse_responses.size());
|
|
|
|
// Analyze the filter outputs and filters.
|
|
bool any_filter_converged = false;
|
|
bool all_filters_diverged = true;
|
|
for (size_t ch = 0; ch < subtractor_output.size(); ++ch) {
|
|
subtractor_output_analyzers_[ch].Update(subtractor_output[ch]);
|
|
any_filter_converged = any_filter_converged ||
|
|
subtractor_output_analyzers_[ch].ConvergedFilter();
|
|
all_filters_diverged = all_filters_diverged &&
|
|
subtractor_output_analyzers_[ch].DivergedFilter();
|
|
}
|
|
bool any_filter_consistent;
|
|
float max_echo_path_gain;
|
|
filter_analyzer_.Update(adaptive_filter_impulse_responses, render_buffer,
|
|
&any_filter_consistent, &max_echo_path_gain);
|
|
|
|
// Estimate the direct path delay of the filter.
|
|
if (config_.filter.use_linear_filter) {
|
|
delay_state_.Update(filter_analyzer_.FilterDelaysBlocks(), external_delay,
|
|
strong_not_saturated_render_blocks_);
|
|
}
|
|
|
|
const std::vector<std::vector<float>>& aligned_render_block =
|
|
render_buffer.Block(-delay_state_.DirectPathFilterDelays()[0])[0];
|
|
|
|
// Update render counters.
|
|
bool active_render = false;
|
|
for (size_t ch = 0; ch < aligned_render_block.size(); ++ch) {
|
|
const float render_energy = std::inner_product(
|
|
aligned_render_block[ch].begin(), aligned_render_block[ch].end(),
|
|
aligned_render_block[ch].begin(), 0.f);
|
|
if (render_energy > (config_.render_levels.active_render_limit *
|
|
config_.render_levels.active_render_limit) *
|
|
kFftLengthBy2) {
|
|
active_render = true;
|
|
break;
|
|
}
|
|
}
|
|
blocks_with_active_render_ += active_render ? 1 : 0;
|
|
strong_not_saturated_render_blocks_ +=
|
|
active_render && !SaturatedCapture() ? 1 : 0;
|
|
|
|
std::array<float, kFftLengthBy2Plus1> avg_render_spectrum_with_reverb;
|
|
|
|
ComputeAvgRenderReverb(render_buffer.GetSpectrumBuffer(),
|
|
delay_state_.MinDirectPathFilterDelay(), ReverbDecay(),
|
|
&avg_render_reverb_, avg_render_spectrum_with_reverb);
|
|
|
|
if (config_.echo_audibility.use_stationarity_properties) {
|
|
// Update the echo audibility evaluator.
|
|
echo_audibility_.Update(render_buffer, avg_render_reverb_.reverb(),
|
|
delay_state_.MinDirectPathFilterDelay(),
|
|
delay_state_.ExternalDelayReported());
|
|
}
|
|
|
|
// Update the ERL and ERLE measures.
|
|
if (initial_state_.TransitionTriggered()) {
|
|
erle_estimator_.Reset(false);
|
|
}
|
|
|
|
erle_estimator_.Update(render_buffer, adaptive_filter_frequency_responses[0],
|
|
avg_render_spectrum_with_reverb, Y2[0], E2_main[0],
|
|
subtractor_output_analyzers_[0].ConvergedFilter(),
|
|
config_.erle.onset_detection);
|
|
|
|
// TODO(bugs.webrtc.org/10913): Take all channels into account.
|
|
const auto& X2 =
|
|
render_buffer.Spectrum(delay_state_.MinDirectPathFilterDelay(),
|
|
/*channel=*/0);
|
|
erl_estimator_.Update(subtractor_output_analyzers_[0].ConvergedFilter(), X2,
|
|
Y2[0]);
|
|
|
|
// Detect and flag echo saturation.
|
|
saturation_detector_.Update(aligned_render_block, SaturatedCapture(),
|
|
UsableLinearEstimate(), subtractor_output,
|
|
max_echo_path_gain);
|
|
|
|
// Update the decision on whether to use the initial state parameter set.
|
|
initial_state_.Update(active_render, SaturatedCapture());
|
|
|
|
// Detect whether the transparent mode should be activated.
|
|
transparent_state_.Update(delay_state_.DirectPathFilterDelays()[0],
|
|
any_filter_consistent, any_filter_converged,
|
|
all_filters_diverged, active_render,
|
|
SaturatedCapture());
|
|
|
|
// Analyze the quality of the filter.
|
|
filter_quality_state_.Update(active_render, TransparentMode(),
|
|
SaturatedCapture(), external_delay,
|
|
any_filter_converged);
|
|
|
|
// Update the reverb estimate.
|
|
const bool stationary_block =
|
|
config_.echo_audibility.use_stationarity_properties &&
|
|
echo_audibility_.IsBlockStationary();
|
|
|
|
reverb_model_estimator_.Update(
|
|
filter_analyzer_.GetAdjustedFilters(),
|
|
adaptive_filter_frequency_responses,
|
|
erle_estimator_.GetInstLinearQualityEstimates(),
|
|
delay_state_.DirectPathFilterDelays(),
|
|
filter_quality_state_.UsableLinearFilterOutputs(), stationary_block);
|
|
|
|
erle_estimator_.Dump(data_dumper_);
|
|
reverb_model_estimator_.Dump(data_dumper_.get());
|
|
data_dumper_->DumpRaw("aec3_erl", Erl());
|
|
data_dumper_->DumpRaw("aec3_erl_time_domain", ErlTimeDomain());
|
|
data_dumper_->DumpRaw("aec3_erle", Erle()[0]);
|
|
data_dumper_->DumpRaw("aec3_usable_linear_estimate", UsableLinearEstimate());
|
|
data_dumper_->DumpRaw("aec3_transparent_mode", TransparentMode());
|
|
data_dumper_->DumpRaw("aec3_filter_delay",
|
|
filter_analyzer_.MinFilterDelayBlocks());
|
|
|
|
data_dumper_->DumpRaw("aec3_any_filter_consistent", any_filter_consistent);
|
|
data_dumper_->DumpRaw("aec3_initial_state",
|
|
initial_state_.InitialStateActive());
|
|
data_dumper_->DumpRaw("aec3_capture_saturation", SaturatedCapture());
|
|
data_dumper_->DumpRaw("aec3_echo_saturation", SaturatedEcho());
|
|
data_dumper_->DumpRaw("aec3_any_filter_converged", any_filter_converged);
|
|
data_dumper_->DumpRaw("aec3_all_filters_diverged", all_filters_diverged);
|
|
|
|
data_dumper_->DumpRaw("aec3_external_delay_avaliable",
|
|
external_delay ? 1 : 0);
|
|
data_dumper_->DumpRaw("aec3_filter_tail_freq_resp_est",
|
|
GetReverbFrequencyResponse());
|
|
}
|
|
|
|
AecState::InitialState::InitialState(const EchoCanceller3Config& config)
|
|
: conservative_initial_phase_(config.filter.conservative_initial_phase),
|
|
initial_state_seconds_(config.filter.initial_state_seconds) {
|
|
Reset();
|
|
}
|
|
void AecState::InitialState::InitialState::Reset() {
|
|
initial_state_ = true;
|
|
strong_not_saturated_render_blocks_ = 0;
|
|
}
|
|
void AecState::InitialState::InitialState::Update(bool active_render,
|
|
bool saturated_capture) {
|
|
strong_not_saturated_render_blocks_ +=
|
|
active_render && !saturated_capture ? 1 : 0;
|
|
|
|
// Flag whether the initial state is still active.
|
|
bool prev_initial_state = initial_state_;
|
|
if (conservative_initial_phase_) {
|
|
initial_state_ =
|
|
strong_not_saturated_render_blocks_ < 5 * kNumBlocksPerSecond;
|
|
} else {
|
|
initial_state_ = strong_not_saturated_render_blocks_ <
|
|
initial_state_seconds_ * kNumBlocksPerSecond;
|
|
}
|
|
|
|
// Flag whether the transition from the initial state has started.
|
|
transition_triggered_ = !initial_state_ && prev_initial_state;
|
|
}
|
|
|
|
AecState::FilterDelay::FilterDelay(const EchoCanceller3Config& config,
|
|
size_t num_capture_channels)
|
|
: delay_headroom_samples_(config.delay.delay_headroom_samples),
|
|
filter_delays_blocks_(num_capture_channels, 0) {}
|
|
|
|
void AecState::FilterDelay::Update(
|
|
rtc::ArrayView<const int> analyzer_filter_delay_estimates_blocks,
|
|
const absl::optional<DelayEstimate>& external_delay,
|
|
size_t blocks_with_proper_filter_adaptation) {
|
|
// Update the delay based on the external delay.
|
|
if (external_delay &&
|
|
(!external_delay_ || external_delay_->delay != external_delay->delay)) {
|
|
external_delay_ = external_delay;
|
|
external_delay_reported_ = true;
|
|
}
|
|
|
|
// Override the estimated delay if it is not certain that the filter has had
|
|
// time to converge.
|
|
const bool delay_estimator_may_not_have_converged =
|
|
blocks_with_proper_filter_adaptation < 2 * kNumBlocksPerSecond;
|
|
if (delay_estimator_may_not_have_converged && external_delay_) {
|
|
int delay_guess = delay_headroom_samples_ / kBlockSize;
|
|
std::fill(filter_delays_blocks_.begin(), filter_delays_blocks_.end(),
|
|
delay_guess);
|
|
} else {
|
|
RTC_DCHECK_EQ(filter_delays_blocks_.size(),
|
|
analyzer_filter_delay_estimates_blocks.size());
|
|
std::copy(analyzer_filter_delay_estimates_blocks.begin(),
|
|
analyzer_filter_delay_estimates_blocks.end(),
|
|
filter_delays_blocks_.begin());
|
|
}
|
|
|
|
min_filter_delay_ = *std::min_element(filter_delays_blocks_.begin(),
|
|
filter_delays_blocks_.end());
|
|
}
|
|
|
|
AecState::TransparentMode::TransparentMode(const EchoCanceller3Config& config)
|
|
: bounded_erl_(config.ep_strength.bounded_erl),
|
|
linear_and_stable_echo_path_(
|
|
config.echo_removal_control.linear_and_stable_echo_path),
|
|
active_blocks_since_sane_filter_(kBlocksSinceConsistentEstimateInit),
|
|
non_converged_sequence_size_(kBlocksSinceConvergencedFilterInit) {}
|
|
|
|
void AecState::TransparentMode::Reset() {
|
|
non_converged_sequence_size_ = kBlocksSinceConvergencedFilterInit;
|
|
diverged_sequence_size_ = 0;
|
|
strong_not_saturated_render_blocks_ = 0;
|
|
if (linear_and_stable_echo_path_) {
|
|
recent_convergence_during_activity_ = false;
|
|
}
|
|
}
|
|
|
|
void AecState::TransparentMode::Update(int filter_delay_blocks,
|
|
bool any_filter_consistent,
|
|
bool any_filter_converged,
|
|
bool all_filters_diverged,
|
|
bool active_render,
|
|
bool saturated_capture) {
|
|
++capture_block_counter_;
|
|
strong_not_saturated_render_blocks_ +=
|
|
active_render && !saturated_capture ? 1 : 0;
|
|
|
|
if (any_filter_consistent && filter_delay_blocks < 5) {
|
|
sane_filter_observed_ = true;
|
|
active_blocks_since_sane_filter_ = 0;
|
|
} else if (active_render) {
|
|
++active_blocks_since_sane_filter_;
|
|
}
|
|
|
|
bool sane_filter_recently_seen;
|
|
if (!sane_filter_observed_) {
|
|
sane_filter_recently_seen =
|
|
capture_block_counter_ <= 5 * kNumBlocksPerSecond;
|
|
} else {
|
|
sane_filter_recently_seen =
|
|
active_blocks_since_sane_filter_ <= 30 * kNumBlocksPerSecond;
|
|
}
|
|
|
|
if (any_filter_converged) {
|
|
recent_convergence_during_activity_ = true;
|
|
active_non_converged_sequence_size_ = 0;
|
|
non_converged_sequence_size_ = 0;
|
|
++num_converged_blocks_;
|
|
} else {
|
|
if (++non_converged_sequence_size_ > 20 * kNumBlocksPerSecond) {
|
|
num_converged_blocks_ = 0;
|
|
}
|
|
|
|
if (active_render &&
|
|
++active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
|
|
recent_convergence_during_activity_ = false;
|
|
}
|
|
}
|
|
|
|
if (!all_filters_diverged) {
|
|
diverged_sequence_size_ = 0;
|
|
} else if (++diverged_sequence_size_ >= 60) {
|
|
// TODO(peah): Change these lines to ensure proper triggering of usable
|
|
// filter.
|
|
non_converged_sequence_size_ = kBlocksSinceConvergencedFilterInit;
|
|
}
|
|
|
|
if (active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
|
|
finite_erl_recently_detected_ = false;
|
|
}
|
|
if (num_converged_blocks_ > 50) {
|
|
finite_erl_recently_detected_ = true;
|
|
}
|
|
|
|
if (bounded_erl_) {
|
|
transparency_activated_ = false;
|
|
} else if (finite_erl_recently_detected_) {
|
|
transparency_activated_ = false;
|
|
} else if (sane_filter_recently_seen && recent_convergence_during_activity_) {
|
|
transparency_activated_ = false;
|
|
} else {
|
|
const bool filter_should_have_converged =
|
|
strong_not_saturated_render_blocks_ > 6 * kNumBlocksPerSecond;
|
|
transparency_activated_ = filter_should_have_converged;
|
|
}
|
|
}
|
|
|
|
AecState::FilteringQualityAnalyzer::FilteringQualityAnalyzer(
|
|
const EchoCanceller3Config& config,
|
|
size_t num_capture_channels)
|
|
: use_linear_filter_(config.filter.use_linear_filter),
|
|
usable_linear_filter_estimates_(num_capture_channels, false) {}
|
|
|
|
void AecState::FilteringQualityAnalyzer::Reset() {
|
|
std::fill(usable_linear_filter_estimates_.begin(),
|
|
usable_linear_filter_estimates_.end(), false);
|
|
overall_usable_linear_estimates_ = false;
|
|
filter_update_blocks_since_reset_ = 0;
|
|
}
|
|
|
|
void AecState::FilteringQualityAnalyzer::Update(
|
|
bool active_render,
|
|
bool transparent_mode,
|
|
bool saturated_capture,
|
|
const absl::optional<DelayEstimate>& external_delay,
|
|
bool any_filter_converged) {
|
|
// Update blocks counter.
|
|
const bool filter_update = active_render && !saturated_capture;
|
|
filter_update_blocks_since_reset_ += filter_update ? 1 : 0;
|
|
filter_update_blocks_since_start_ += filter_update ? 1 : 0;
|
|
|
|
// Store convergence flag when observed.
|
|
convergence_seen_ = convergence_seen_ || any_filter_converged;
|
|
|
|
// Verify requirements for achieving a decent filter. The requirements for
|
|
// filter adaptation at call startup are more restrictive than after an
|
|
// in-call reset.
|
|
const bool sufficient_data_to_converge_at_startup =
|
|
filter_update_blocks_since_start_ > kNumBlocksPerSecond * 0.4f;
|
|
const bool sufficient_data_to_converge_at_reset =
|
|
sufficient_data_to_converge_at_startup &&
|
|
filter_update_blocks_since_reset_ > kNumBlocksPerSecond * 0.2f;
|
|
|
|
// The linear filter can only be used if it has had time to converge.
|
|
overall_usable_linear_estimates_ = sufficient_data_to_converge_at_startup &&
|
|
sufficient_data_to_converge_at_reset;
|
|
|
|
// The linear filter can only be used if an external delay or convergence have
|
|
// been identified
|
|
overall_usable_linear_estimates_ =
|
|
overall_usable_linear_estimates_ && (external_delay || convergence_seen_);
|
|
|
|
// If transparent mode is on, deactivate usign the linear filter.
|
|
overall_usable_linear_estimates_ =
|
|
overall_usable_linear_estimates_ && !transparent_mode;
|
|
|
|
if (use_linear_filter_) {
|
|
std::fill(usable_linear_filter_estimates_.begin(),
|
|
usable_linear_filter_estimates_.end(),
|
|
overall_usable_linear_estimates_);
|
|
}
|
|
}
|
|
|
|
void AecState::SaturationDetector::Update(
|
|
rtc::ArrayView<const std::vector<float>> x,
|
|
bool saturated_capture,
|
|
bool usable_linear_estimate,
|
|
rtc::ArrayView<const SubtractorOutput> subtractor_output,
|
|
float echo_path_gain) {
|
|
saturated_echo_ = false;
|
|
if (!saturated_capture) {
|
|
return;
|
|
}
|
|
|
|
if (usable_linear_estimate) {
|
|
constexpr float kSaturationThreshold = 20000.f;
|
|
for (size_t ch = 0; ch < subtractor_output.size(); ++ch) {
|
|
saturated_echo_ =
|
|
saturated_echo_ ||
|
|
(subtractor_output[ch].s_main_max_abs > kSaturationThreshold ||
|
|
subtractor_output[ch].s_shadow_max_abs > kSaturationThreshold);
|
|
}
|
|
} else {
|
|
float max_sample = 0.f;
|
|
for (auto& channel : x) {
|
|
for (float sample : channel) {
|
|
max_sample = std::max(max_sample, fabsf(sample));
|
|
}
|
|
}
|
|
|
|
const float kMargin = 10.f;
|
|
float peak_echo_amplitude = max_sample * echo_path_gain * kMargin;
|
|
saturated_echo_ = saturated_echo_ || peak_echo_amplitude > 32000;
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|