webrtc/rtc_base/time_utils.cc
Johannes Kron b73c9f0bc3 Extract SystemTimeNanos to its own file
Prepare for this function to be overridden when WebRTC is included
into other applications such as chromium. This will make it
possible to remove code that keeps track of the difference between
WebRTC and chromium time.

Bug: chromium:516700
Change-Id: I73133804f945cc439f9827ec68a8e67b96d8560f
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/204304
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org>
Reviewed-by: Niels Moller <nisse@webrtc.org>
Commit-Queue: Johannes Kron <kron@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#33273}
2021-02-15 22:38:46 +00:00

266 lines
7.4 KiB
C++

/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdint.h>
#if defined(WEBRTC_POSIX)
#include <sys/time.h>
#endif
#if defined(WEBRTC_WIN)
#include <sys/timeb.h>
#endif
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/system_time.h"
#include "rtc_base/time_utils.h"
namespace rtc {
ClockInterface* g_clock = nullptr;
ClockInterface* SetClockForTesting(ClockInterface* clock) {
ClockInterface* prev = g_clock;
g_clock = clock;
return prev;
}
ClockInterface* GetClockForTesting() {
return g_clock;
}
#if defined(WINUWP)
namespace {
class TimeHelper final {
public:
TimeHelper(const TimeHelper&) = delete;
// Resets the clock based upon an NTP server. This routine must be called
// prior to the main system start-up to ensure all clocks are based upon
// an NTP server time if NTP synchronization is required. No critical
// section is used thus this method must be called prior to any clock
// routines being used.
static void SyncWithNtp(int64_t ntp_server_time_ms) {
auto& singleton = Singleton();
TIME_ZONE_INFORMATION time_zone;
GetTimeZoneInformation(&time_zone);
int64_t time_zone_bias_ns =
rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000;
singleton.app_start_time_ns_ =
(ntp_server_time_ms - kNTPTimeToUnixTimeEpochOffset) * 1000000 -
time_zone_bias_ns;
singleton.UpdateReferenceTime();
}
// Returns the number of nanoseconds that have passed since unix epoch.
static int64_t TicksNs() {
auto& singleton = Singleton();
int64_t result = 0;
LARGE_INTEGER qpcnt;
QueryPerformanceCounter(&qpcnt);
result = rtc::dchecked_cast<int64_t>(
(rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 /
rtc::dchecked_cast<uint64_t>(singleton.os_ticks_per_second_)) *
10000);
result = singleton.app_start_time_ns_ + result -
singleton.time_since_os_start_ns_;
return result;
}
private:
TimeHelper() {
TIME_ZONE_INFORMATION time_zone;
GetTimeZoneInformation(&time_zone);
int64_t time_zone_bias_ns =
rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000;
FILETIME ft;
// This will give us system file in UTC format.
GetSystemTimeAsFileTime(&ft);
LARGE_INTEGER li;
li.HighPart = ft.dwHighDateTime;
li.LowPart = ft.dwLowDateTime;
app_start_time_ns_ = (li.QuadPart - kFileTimeToUnixTimeEpochOffset) * 100 -
time_zone_bias_ns;
UpdateReferenceTime();
}
static TimeHelper& Singleton() {
static TimeHelper singleton;
return singleton;
}
void UpdateReferenceTime() {
LARGE_INTEGER qpfreq;
QueryPerformanceFrequency(&qpfreq);
os_ticks_per_second_ = rtc::dchecked_cast<int64_t>(qpfreq.QuadPart);
LARGE_INTEGER qpcnt;
QueryPerformanceCounter(&qpcnt);
time_since_os_start_ns_ = rtc::dchecked_cast<int64_t>(
(rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 /
rtc::dchecked_cast<uint64_t>(os_ticks_per_second_)) *
10000);
}
private:
static constexpr uint64_t kFileTimeToUnixTimeEpochOffset =
116444736000000000ULL;
static constexpr uint64_t kNTPTimeToUnixTimeEpochOffset = 2208988800000L;
// The number of nanoseconds since unix system epoch
int64_t app_start_time_ns_;
// The number of nanoseconds since the OS started
int64_t time_since_os_start_ns_;
// The OS calculated ticks per second
int64_t os_ticks_per_second_;
};
} // namespace
void SyncWithNtp(int64_t time_from_ntp_server_ms) {
TimeHelper::SyncWithNtp(time_from_ntp_server_ms);
}
#endif // defined(WINUWP)
int64_t SystemTimeMillis() {
return static_cast<int64_t>(SystemTimeNanos() / kNumNanosecsPerMillisec);
}
int64_t TimeNanos() {
if (g_clock) {
return g_clock->TimeNanos();
}
return SystemTimeNanos();
}
uint32_t Time32() {
return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec);
}
int64_t TimeMillis() {
return TimeNanos() / kNumNanosecsPerMillisec;
}
int64_t TimeMicros() {
return TimeNanos() / kNumNanosecsPerMicrosec;
}
int64_t TimeAfter(int64_t elapsed) {
RTC_DCHECK_GE(elapsed, 0);
return TimeMillis() + elapsed;
}
int32_t TimeDiff32(uint32_t later, uint32_t earlier) {
return later - earlier;
}
int64_t TimeDiff(int64_t later, int64_t earlier) {
return later - earlier;
}
TimestampWrapAroundHandler::TimestampWrapAroundHandler()
: last_ts_(0), num_wrap_(-1) {}
int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) {
if (num_wrap_ == -1) {
last_ts_ = ts;
num_wrap_ = 0;
return ts;
}
if (ts < last_ts_) {
if (last_ts_ >= 0xf0000000 && ts < 0x0fffffff)
++num_wrap_;
} else if ((ts - last_ts_) > 0xf0000000) {
// Backwards wrap. Unwrap with last wrap count and don't update last_ts_.
return ts + (num_wrap_ - 1) * (int64_t{1} << 32);
}
last_ts_ = ts;
return ts + (num_wrap_ << 32);
}
int64_t TmToSeconds(const tm& tm) {
static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
static short int cumul_mdays[12] = {0, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334};
int year = tm.tm_year + 1900;
int month = tm.tm_mon;
int day = tm.tm_mday - 1; // Make 0-based like the rest.
int hour = tm.tm_hour;
int min = tm.tm_min;
int sec = tm.tm_sec;
bool expiry_in_leap_year =
(year % 4 == 0 && (year % 100 != 0 || year % 400 == 0));
if (year < 1970)
return -1;
if (month < 0 || month > 11)
return -1;
if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1))
return -1;
if (hour < 0 || hour > 23)
return -1;
if (min < 0 || min > 59)
return -1;
if (sec < 0 || sec > 59)
return -1;
day += cumul_mdays[month];
// Add number of leap days between 1970 and the expiration year, inclusive.
day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) +
(year / 400 - 1970 / 400));
// We will have added one day too much above if expiration is during a leap
// year, and expiration is in January or February.
if (expiry_in_leap_year && month <= 2 - 1) // |month| is zero based.
day -= 1;
// Combine all variables into seconds from 1970-01-01 00:00 (except |month|
// which was accumulated into |day| above).
return (((static_cast<int64_t>(year - 1970) * 365 + day) * 24 + hour) * 60 +
min) *
60 +
sec;
}
int64_t TimeUTCMicros() {
if (g_clock) {
return g_clock->TimeNanos() / kNumNanosecsPerMicrosec;
}
#if defined(WEBRTC_POSIX)
struct timeval time;
gettimeofday(&time, nullptr);
// Convert from second (1.0) and microsecond (1e-6).
return (static_cast<int64_t>(time.tv_sec) * rtc::kNumMicrosecsPerSec +
time.tv_usec);
#elif defined(WEBRTC_WIN)
struct _timeb time;
_ftime(&time);
// Convert from second (1.0) and milliseconds (1e-3).
return (static_cast<int64_t>(time.time) * rtc::kNumMicrosecsPerSec +
static_cast<int64_t>(time.millitm) * rtc::kNumMicrosecsPerMillisec);
#endif
}
int64_t TimeUTCMillis() {
return TimeUTCMicros() / kNumMicrosecsPerMillisec;
}
} // namespace rtc