mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 05:40:42 +01:00

Bug: None Change-Id: I6799794659dce52f0d9f98dc1b5c63e0806d152d Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/267403 Auto-Submit: Erik Språng <sprang@webrtc.org> Reviewed-by: Philip Eliasson <philipel@webrtc.org> Commit-Queue: Erik Språng <sprang@webrtc.org> Cr-Commit-Position: refs/heads/main@{#37406}
442 lines
17 KiB
C++
442 lines
17 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/congestion_controller/goog_cc/probe_controller.h"
|
|
|
|
#include <algorithm>
|
|
#include <initializer_list>
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#include "absl/strings/match.h"
|
|
#include "api/units/data_rate.h"
|
|
#include "api/units/time_delta.h"
|
|
#include "api/units/timestamp.h"
|
|
#include "logging/rtc_event_log/events/rtc_event_probe_cluster_created.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#include "system_wrappers/include/metrics.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
// Maximum waiting time from the time of initiating probing to getting
|
|
// the measured results back.
|
|
constexpr int64_t kMaxWaitingTimeForProbingResultMs = 1000;
|
|
|
|
// Value of `min_bitrate_to_probe_further_bps_` that indicates
|
|
// further probing is disabled.
|
|
constexpr int kExponentialProbingDisabled = 0;
|
|
|
|
// Default probing bitrate limit. Applied only when the application didn't
|
|
// specify max bitrate.
|
|
constexpr int64_t kDefaultMaxProbingBitrateBps = 5000000;
|
|
|
|
// If the bitrate drops to a factor `kBitrateDropThreshold` or lower
|
|
// and we recover within `kBitrateDropTimeoutMs`, then we'll send
|
|
// a probe at a fraction `kProbeFractionAfterDrop` of the original bitrate.
|
|
constexpr double kBitrateDropThreshold = 0.66;
|
|
constexpr int kBitrateDropTimeoutMs = 5000;
|
|
constexpr double kProbeFractionAfterDrop = 0.85;
|
|
|
|
// Timeout for probing after leaving ALR. If the bitrate drops significantly,
|
|
// (as determined by the delay based estimator) and we leave ALR, then we will
|
|
// send a probe if we recover within `kLeftAlrTimeoutMs` ms.
|
|
constexpr int kAlrEndedTimeoutMs = 3000;
|
|
|
|
// The expected uncertainty of probe result (as a fraction of the target probe
|
|
// This is a limit on how often probing can be done when there is a BW
|
|
// drop detected in ALR.
|
|
constexpr int64_t kMinTimeBetweenAlrProbesMs = 5000;
|
|
|
|
// bitrate). Used to avoid probing if the probe bitrate is close to our current
|
|
// estimate.
|
|
constexpr double kProbeUncertainty = 0.05;
|
|
|
|
// Use probing to recover faster after large bitrate estimate drops.
|
|
constexpr char kBweRapidRecoveryExperiment[] =
|
|
"WebRTC-BweRapidRecoveryExperiment";
|
|
|
|
void MaybeLogProbeClusterCreated(RtcEventLog* event_log,
|
|
const ProbeClusterConfig& probe) {
|
|
RTC_DCHECK(event_log);
|
|
if (!event_log) {
|
|
return;
|
|
}
|
|
|
|
size_t min_bytes = static_cast<int32_t>(probe.target_data_rate.bps() *
|
|
probe.target_duration.ms() / 8000);
|
|
event_log->Log(std::make_unique<RtcEventProbeClusterCreated>(
|
|
probe.id, probe.target_data_rate.bps(), probe.target_probe_count,
|
|
min_bytes));
|
|
}
|
|
|
|
} // namespace
|
|
|
|
ProbeControllerConfig::ProbeControllerConfig(
|
|
const FieldTrialsView* key_value_config)
|
|
: first_exponential_probe_scale("p1", 3.0),
|
|
second_exponential_probe_scale("p2", 6.0),
|
|
further_exponential_probe_scale("step_size", 2),
|
|
further_probe_threshold("further_probe_threshold", 0.7),
|
|
alr_probing_interval("alr_interval", TimeDelta::Seconds(5)),
|
|
alr_probe_scale("alr_scale", 2),
|
|
first_allocation_probe_scale("alloc_p1", 1),
|
|
second_allocation_probe_scale("alloc_p2", 2),
|
|
allocation_allow_further_probing("alloc_probe_further", false),
|
|
allocation_probe_max("alloc_probe_max", DataRate::PlusInfinity()),
|
|
min_probe_packets_sent("min_probe_packets_sent", 5),
|
|
min_probe_duration("min_probe_duration", TimeDelta::Millis(15)) {
|
|
ParseFieldTrial(
|
|
{&first_exponential_probe_scale, &second_exponential_probe_scale,
|
|
&further_exponential_probe_scale, &further_probe_threshold,
|
|
&alr_probing_interval, &alr_probe_scale, &first_allocation_probe_scale,
|
|
&second_allocation_probe_scale, &allocation_allow_further_probing},
|
|
key_value_config->Lookup("WebRTC-Bwe-ProbingConfiguration"));
|
|
|
|
// Specialized keys overriding subsets of WebRTC-Bwe-ProbingConfiguration
|
|
ParseFieldTrial(
|
|
{&first_exponential_probe_scale, &second_exponential_probe_scale},
|
|
key_value_config->Lookup("WebRTC-Bwe-InitialProbing"));
|
|
ParseFieldTrial({&further_exponential_probe_scale, &further_probe_threshold},
|
|
key_value_config->Lookup("WebRTC-Bwe-ExponentialProbing"));
|
|
ParseFieldTrial({&alr_probing_interval, &alr_probe_scale},
|
|
key_value_config->Lookup("WebRTC-Bwe-AlrProbing"));
|
|
ParseFieldTrial(
|
|
{&first_allocation_probe_scale, &second_allocation_probe_scale,
|
|
&allocation_allow_further_probing, &allocation_probe_max},
|
|
key_value_config->Lookup("WebRTC-Bwe-AllocationProbing"));
|
|
ParseFieldTrial({&min_probe_packets_sent, &min_probe_duration},
|
|
key_value_config->Lookup("WebRTC-Bwe-ProbingBehavior"));
|
|
}
|
|
|
|
ProbeControllerConfig::ProbeControllerConfig(const ProbeControllerConfig&) =
|
|
default;
|
|
ProbeControllerConfig::~ProbeControllerConfig() = default;
|
|
|
|
ProbeController::ProbeController(const FieldTrialsView* key_value_config,
|
|
RtcEventLog* event_log)
|
|
: enable_periodic_alr_probing_(false),
|
|
in_rapid_recovery_experiment_(absl::StartsWith(
|
|
key_value_config->Lookup(kBweRapidRecoveryExperiment),
|
|
"Enabled")),
|
|
event_log_(event_log),
|
|
config_(ProbeControllerConfig(key_value_config)) {
|
|
Reset(0);
|
|
}
|
|
|
|
ProbeController::~ProbeController() {}
|
|
|
|
std::vector<ProbeClusterConfig> ProbeController::SetBitrates(
|
|
int64_t min_bitrate_bps,
|
|
int64_t start_bitrate_bps,
|
|
int64_t max_bitrate_bps,
|
|
int64_t at_time_ms) {
|
|
if (start_bitrate_bps > 0) {
|
|
start_bitrate_bps_ = start_bitrate_bps;
|
|
estimated_bitrate_bps_ = start_bitrate_bps;
|
|
} else if (start_bitrate_bps_ == 0) {
|
|
start_bitrate_bps_ = min_bitrate_bps;
|
|
}
|
|
|
|
// The reason we use the variable `old_max_bitrate_pbs` is because we
|
|
// need to set `max_bitrate_bps_` before we call InitiateProbing.
|
|
int64_t old_max_bitrate_bps = max_bitrate_bps_;
|
|
max_bitrate_bps_ = max_bitrate_bps;
|
|
|
|
switch (state_) {
|
|
case State::kInit:
|
|
if (network_available_)
|
|
return InitiateExponentialProbing(at_time_ms);
|
|
break;
|
|
|
|
case State::kWaitingForProbingResult:
|
|
break;
|
|
|
|
case State::kProbingComplete:
|
|
// If the new max bitrate is higher than both the old max bitrate and the
|
|
// estimate then initiate probing.
|
|
if (estimated_bitrate_bps_ != 0 &&
|
|
old_max_bitrate_bps < max_bitrate_bps_ &&
|
|
estimated_bitrate_bps_ < max_bitrate_bps_) {
|
|
// The assumption is that if we jump more than 20% in the bandwidth
|
|
// estimate or if the bandwidth estimate is within 90% of the new
|
|
// max bitrate then the probing attempt was successful.
|
|
mid_call_probing_succcess_threshold_ =
|
|
std::min(estimated_bitrate_bps_ * 1.2, max_bitrate_bps_ * 0.9);
|
|
mid_call_probing_waiting_for_result_ = true;
|
|
mid_call_probing_bitrate_bps_ = max_bitrate_bps_;
|
|
|
|
RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Initiated",
|
|
max_bitrate_bps_ / 1000);
|
|
|
|
return InitiateProbing(at_time_ms, {max_bitrate_bps_}, false);
|
|
}
|
|
break;
|
|
}
|
|
return std::vector<ProbeClusterConfig>();
|
|
}
|
|
|
|
std::vector<ProbeClusterConfig> ProbeController::OnMaxTotalAllocatedBitrate(
|
|
int64_t max_total_allocated_bitrate,
|
|
int64_t at_time_ms) {
|
|
const bool in_alr = alr_start_time_ms_.has_value();
|
|
const bool allow_allocation_probe = in_alr;
|
|
|
|
if (state_ == State::kProbingComplete &&
|
|
max_total_allocated_bitrate != max_total_allocated_bitrate_ &&
|
|
estimated_bitrate_bps_ != 0 &&
|
|
(max_bitrate_bps_ <= 0 || estimated_bitrate_bps_ < max_bitrate_bps_) &&
|
|
estimated_bitrate_bps_ < max_total_allocated_bitrate &&
|
|
allow_allocation_probe) {
|
|
max_total_allocated_bitrate_ = max_total_allocated_bitrate;
|
|
|
|
if (!config_.first_allocation_probe_scale)
|
|
return std::vector<ProbeClusterConfig>();
|
|
|
|
DataRate first_probe_rate =
|
|
DataRate::BitsPerSec(max_total_allocated_bitrate) *
|
|
config_.first_allocation_probe_scale.Value();
|
|
DataRate probe_cap = config_.allocation_probe_max.Get();
|
|
first_probe_rate = std::min(first_probe_rate, probe_cap);
|
|
std::vector<int64_t> probes = {first_probe_rate.bps()};
|
|
if (config_.second_allocation_probe_scale) {
|
|
DataRate second_probe_rate =
|
|
DataRate::BitsPerSec(max_total_allocated_bitrate) *
|
|
config_.second_allocation_probe_scale.Value();
|
|
second_probe_rate = std::min(second_probe_rate, probe_cap);
|
|
if (second_probe_rate > first_probe_rate)
|
|
probes.push_back(second_probe_rate.bps());
|
|
}
|
|
return InitiateProbing(at_time_ms, probes,
|
|
config_.allocation_allow_further_probing.Get());
|
|
}
|
|
max_total_allocated_bitrate_ = max_total_allocated_bitrate;
|
|
return std::vector<ProbeClusterConfig>();
|
|
}
|
|
|
|
std::vector<ProbeClusterConfig> ProbeController::OnNetworkAvailability(
|
|
NetworkAvailability msg) {
|
|
network_available_ = msg.network_available;
|
|
|
|
if (!network_available_ && state_ == State::kWaitingForProbingResult) {
|
|
state_ = State::kProbingComplete;
|
|
min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled;
|
|
}
|
|
|
|
if (network_available_ && state_ == State::kInit && start_bitrate_bps_ > 0)
|
|
return InitiateExponentialProbing(msg.at_time.ms());
|
|
return std::vector<ProbeClusterConfig>();
|
|
}
|
|
|
|
std::vector<ProbeClusterConfig> ProbeController::InitiateExponentialProbing(
|
|
int64_t at_time_ms) {
|
|
RTC_DCHECK(network_available_);
|
|
RTC_DCHECK(state_ == State::kInit);
|
|
RTC_DCHECK_GT(start_bitrate_bps_, 0);
|
|
|
|
// When probing at 1.8 Mbps ( 6x 300), this represents a threshold of
|
|
// 1.2 Mbps to continue probing.
|
|
std::vector<int64_t> probes = {static_cast<int64_t>(
|
|
config_.first_exponential_probe_scale * start_bitrate_bps_)};
|
|
if (config_.second_exponential_probe_scale) {
|
|
probes.push_back(config_.second_exponential_probe_scale.Value() *
|
|
start_bitrate_bps_);
|
|
}
|
|
return InitiateProbing(at_time_ms, probes, true);
|
|
}
|
|
|
|
std::vector<ProbeClusterConfig> ProbeController::SetEstimatedBitrate(
|
|
int64_t bitrate_bps,
|
|
int64_t at_time_ms) {
|
|
if (mid_call_probing_waiting_for_result_ &&
|
|
bitrate_bps >= mid_call_probing_succcess_threshold_) {
|
|
RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Success",
|
|
mid_call_probing_bitrate_bps_ / 1000);
|
|
RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.ProbedKbps",
|
|
bitrate_bps / 1000);
|
|
mid_call_probing_waiting_for_result_ = false;
|
|
}
|
|
std::vector<ProbeClusterConfig> pending_probes;
|
|
if (state_ == State::kWaitingForProbingResult) {
|
|
// Continue probing if probing results indicate channel has greater
|
|
// capacity.
|
|
RTC_LOG(LS_INFO) << "Measured bitrate: " << bitrate_bps
|
|
<< " Minimum to probe further: "
|
|
<< min_bitrate_to_probe_further_bps_;
|
|
|
|
if (min_bitrate_to_probe_further_bps_ != kExponentialProbingDisabled &&
|
|
bitrate_bps > min_bitrate_to_probe_further_bps_) {
|
|
pending_probes = InitiateProbing(
|
|
at_time_ms,
|
|
{static_cast<int64_t>(config_.further_exponential_probe_scale *
|
|
bitrate_bps)},
|
|
true);
|
|
}
|
|
}
|
|
|
|
if (bitrate_bps < kBitrateDropThreshold * estimated_bitrate_bps_) {
|
|
time_of_last_large_drop_ms_ = at_time_ms;
|
|
bitrate_before_last_large_drop_bps_ = estimated_bitrate_bps_;
|
|
}
|
|
|
|
estimated_bitrate_bps_ = bitrate_bps;
|
|
return pending_probes;
|
|
}
|
|
|
|
void ProbeController::EnablePeriodicAlrProbing(bool enable) {
|
|
enable_periodic_alr_probing_ = enable;
|
|
}
|
|
|
|
void ProbeController::SetAlrStartTimeMs(
|
|
absl::optional<int64_t> alr_start_time_ms) {
|
|
alr_start_time_ms_ = alr_start_time_ms;
|
|
}
|
|
void ProbeController::SetAlrEndedTimeMs(int64_t alr_end_time_ms) {
|
|
alr_end_time_ms_.emplace(alr_end_time_ms);
|
|
}
|
|
|
|
std::vector<ProbeClusterConfig> ProbeController::RequestProbe(
|
|
int64_t at_time_ms) {
|
|
// Called once we have returned to normal state after a large drop in
|
|
// estimated bandwidth. The current response is to initiate a single probe
|
|
// session (if not already probing) at the previous bitrate.
|
|
//
|
|
// If the probe session fails, the assumption is that this drop was a
|
|
// real one from a competing flow or a network change.
|
|
bool in_alr = alr_start_time_ms_.has_value();
|
|
bool alr_ended_recently =
|
|
(alr_end_time_ms_.has_value() &&
|
|
at_time_ms - alr_end_time_ms_.value() < kAlrEndedTimeoutMs);
|
|
if (in_alr || alr_ended_recently || in_rapid_recovery_experiment_) {
|
|
if (state_ == State::kProbingComplete) {
|
|
uint32_t suggested_probe_bps =
|
|
kProbeFractionAfterDrop * bitrate_before_last_large_drop_bps_;
|
|
uint32_t min_expected_probe_result_bps =
|
|
(1 - kProbeUncertainty) * suggested_probe_bps;
|
|
int64_t time_since_drop_ms = at_time_ms - time_of_last_large_drop_ms_;
|
|
int64_t time_since_probe_ms = at_time_ms - last_bwe_drop_probing_time_ms_;
|
|
if (min_expected_probe_result_bps > estimated_bitrate_bps_ &&
|
|
time_since_drop_ms < kBitrateDropTimeoutMs &&
|
|
time_since_probe_ms > kMinTimeBetweenAlrProbesMs) {
|
|
RTC_LOG(LS_INFO) << "Detected big bandwidth drop, start probing.";
|
|
// Track how often we probe in response to bandwidth drop in ALR.
|
|
RTC_HISTOGRAM_COUNTS_10000(
|
|
"WebRTC.BWE.BweDropProbingIntervalInS",
|
|
(at_time_ms - last_bwe_drop_probing_time_ms_) / 1000);
|
|
last_bwe_drop_probing_time_ms_ = at_time_ms;
|
|
return InitiateProbing(at_time_ms, {suggested_probe_bps}, false);
|
|
}
|
|
}
|
|
}
|
|
return std::vector<ProbeClusterConfig>();
|
|
}
|
|
|
|
void ProbeController::SetMaxBitrate(int64_t max_bitrate_bps) {
|
|
max_bitrate_bps_ = max_bitrate_bps;
|
|
}
|
|
|
|
void ProbeController::Reset(int64_t at_time_ms) {
|
|
network_available_ = true;
|
|
state_ = State::kInit;
|
|
min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled;
|
|
time_last_probing_initiated_ms_ = 0;
|
|
estimated_bitrate_bps_ = 0;
|
|
start_bitrate_bps_ = 0;
|
|
max_bitrate_bps_ = 0;
|
|
int64_t now_ms = at_time_ms;
|
|
last_bwe_drop_probing_time_ms_ = now_ms;
|
|
alr_end_time_ms_.reset();
|
|
mid_call_probing_waiting_for_result_ = false;
|
|
time_of_last_large_drop_ms_ = now_ms;
|
|
bitrate_before_last_large_drop_bps_ = 0;
|
|
max_total_allocated_bitrate_ = 0;
|
|
}
|
|
|
|
std::vector<ProbeClusterConfig> ProbeController::Process(int64_t at_time_ms) {
|
|
if (at_time_ms - time_last_probing_initiated_ms_ >
|
|
kMaxWaitingTimeForProbingResultMs) {
|
|
mid_call_probing_waiting_for_result_ = false;
|
|
|
|
if (state_ == State::kWaitingForProbingResult) {
|
|
RTC_LOG(LS_INFO) << "kWaitingForProbingResult: timeout";
|
|
state_ = State::kProbingComplete;
|
|
min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled;
|
|
}
|
|
}
|
|
|
|
if (enable_periodic_alr_probing_ && state_ == State::kProbingComplete) {
|
|
// Probe bandwidth periodically when in ALR state.
|
|
if (alr_start_time_ms_ && estimated_bitrate_bps_ > 0) {
|
|
int64_t next_probe_time_ms =
|
|
std::max(*alr_start_time_ms_, time_last_probing_initiated_ms_) +
|
|
config_.alr_probing_interval->ms();
|
|
if (at_time_ms >= next_probe_time_ms) {
|
|
return InitiateProbing(at_time_ms,
|
|
{static_cast<int64_t>(estimated_bitrate_bps_ *
|
|
config_.alr_probe_scale)},
|
|
true);
|
|
}
|
|
}
|
|
}
|
|
return std::vector<ProbeClusterConfig>();
|
|
}
|
|
|
|
std::vector<ProbeClusterConfig> ProbeController::InitiateProbing(
|
|
int64_t now_ms,
|
|
std::vector<int64_t> bitrates_to_probe,
|
|
bool probe_further) {
|
|
int64_t max_probe_bitrate_bps =
|
|
max_bitrate_bps_ > 0 ? max_bitrate_bps_ : kDefaultMaxProbingBitrateBps;
|
|
if (max_total_allocated_bitrate_ > 0) {
|
|
// If a max allocated bitrate has been configured, allow probing up to 2x
|
|
// that rate. This allows some overhead to account for bursty streams,
|
|
// which otherwise would have to ramp up when the overshoot is already in
|
|
// progress.
|
|
// It also avoids minor quality reduction caused by probes often being
|
|
// received at slightly less than the target probe bitrate.
|
|
max_probe_bitrate_bps =
|
|
std::min(max_probe_bitrate_bps, max_total_allocated_bitrate_ * 2);
|
|
}
|
|
|
|
std::vector<ProbeClusterConfig> pending_probes;
|
|
for (int64_t bitrate : bitrates_to_probe) {
|
|
RTC_DCHECK_GT(bitrate, 0);
|
|
|
|
if (bitrate > max_probe_bitrate_bps) {
|
|
bitrate = max_probe_bitrate_bps;
|
|
probe_further = false;
|
|
}
|
|
|
|
ProbeClusterConfig config;
|
|
config.at_time = Timestamp::Millis(now_ms);
|
|
config.target_data_rate =
|
|
DataRate::BitsPerSec(rtc::dchecked_cast<int>(bitrate));
|
|
config.target_duration = config_.min_probe_duration;
|
|
config.target_probe_count = config_.min_probe_packets_sent;
|
|
config.id = next_probe_cluster_id_;
|
|
next_probe_cluster_id_++;
|
|
MaybeLogProbeClusterCreated(event_log_, config);
|
|
pending_probes.push_back(config);
|
|
}
|
|
time_last_probing_initiated_ms_ = now_ms;
|
|
if (probe_further) {
|
|
state_ = State::kWaitingForProbingResult;
|
|
min_bitrate_to_probe_further_bps_ =
|
|
(*(bitrates_to_probe.end() - 1)) * config_.further_probe_threshold;
|
|
} else {
|
|
state_ = State::kProbingComplete;
|
|
min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled;
|
|
}
|
|
return pending_probes;
|
|
}
|
|
|
|
} // namespace webrtc
|