webrtc/modules/video_coding/rtp_vp9_ref_finder.cc
Florent Castelli 90b74389a2 SVC: Add end to end tests for VP8 and VP9
The tests check that the various scalability mode are supported
and the frames are marked properly by the encoder with their
spatial and temporal index.
The same information is then checked on the receiving side.

A new member is added on EncodedImage to store the temporal index,
and is filled by the encoders and retreived by the ref finder
objects on the decoding side.

Bug: webrtc:11607
Change-Id: I7522f6a6fc5402244cab0c4c64b544ce09bc5204
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/260189
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Reviewed-by: Rasmus Brandt <brandtr@webrtc.org>
Reviewed-by: Artem Titov <titovartem@webrtc.org>
Commit-Queue: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37303}
2022-06-22 11:07:01 +00:00

367 lines
12 KiB
C++

/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/rtp_vp9_ref_finder.h"
#include <algorithm>
#include <utility>
#include "rtc_base/logging.h"
namespace webrtc {
RtpFrameReferenceFinder::ReturnVector RtpVp9RefFinder::ManageFrame(
std::unique_ptr<RtpFrameObject> frame) {
const RTPVideoHeaderVP9& codec_header = absl::get<RTPVideoHeaderVP9>(
frame->GetRtpVideoHeader().video_type_header);
if (codec_header.temporal_idx != kNoTemporalIdx)
frame->SetTemporalIndex(codec_header.temporal_idx);
frame->SetSpatialIndex(codec_header.spatial_idx);
frame->SetId(codec_header.picture_id & (kFrameIdLength - 1));
FrameDecision decision;
if (codec_header.temporal_idx >= kMaxTemporalLayers ||
codec_header.spatial_idx >= kMaxSpatialLayers) {
decision = kDrop;
} else if (codec_header.flexible_mode) {
decision = ManageFrameFlexible(frame.get(), codec_header);
} else {
if (codec_header.tl0_pic_idx == kNoTl0PicIdx) {
RTC_LOG(LS_WARNING) << "TL0PICIDX is expected to be present in "
"non-flexible mode.";
decision = kDrop;
} else {
int64_t unwrapped_tl0 =
tl0_unwrapper_.Unwrap(codec_header.tl0_pic_idx & 0xFF);
decision = ManageFrameGof(frame.get(), codec_header, unwrapped_tl0);
if (decision == kStash) {
if (stashed_frames_.size() > kMaxStashedFrames) {
stashed_frames_.pop_back();
}
stashed_frames_.push_front(
{.unwrapped_tl0 = unwrapped_tl0, .frame = std::move(frame)});
}
}
}
RtpFrameReferenceFinder::ReturnVector res;
switch (decision) {
case kStash:
return res;
case kHandOff:
res.push_back(std::move(frame));
RetryStashedFrames(res);
return res;
case kDrop:
return res;
}
return res;
}
RtpVp9RefFinder::FrameDecision RtpVp9RefFinder::ManageFrameFlexible(
RtpFrameObject* frame,
const RTPVideoHeaderVP9& codec_header) {
if (codec_header.num_ref_pics > EncodedFrame::kMaxFrameReferences) {
return kDrop;
}
frame->num_references = codec_header.num_ref_pics;
for (size_t i = 0; i < frame->num_references; ++i) {
frame->references[i] =
Subtract<kFrameIdLength>(frame->Id(), codec_header.pid_diff[i]);
}
FlattenFrameIdAndRefs(frame, codec_header.inter_layer_predicted);
return kHandOff;
}
RtpVp9RefFinder::FrameDecision RtpVp9RefFinder::ManageFrameGof(
RtpFrameObject* frame,
const RTPVideoHeaderVP9& codec_header,
int64_t unwrapped_tl0) {
GofInfo* info;
if (codec_header.ss_data_available) {
if (codec_header.temporal_idx != 0) {
RTC_LOG(LS_WARNING) << "Received scalability structure on a non base "
"layer frame. Scalability structure ignored.";
} else {
if (codec_header.gof.num_frames_in_gof > kMaxVp9FramesInGof) {
return kDrop;
}
for (size_t i = 0; i < codec_header.gof.num_frames_in_gof; ++i) {
if (codec_header.gof.num_ref_pics[i] > kMaxVp9RefPics) {
return kDrop;
}
}
GofInfoVP9 gof = codec_header.gof;
if (gof.num_frames_in_gof == 0) {
RTC_LOG(LS_WARNING) << "Number of frames in GOF is zero. Assume "
"that stream has only one temporal layer.";
gof.SetGofInfoVP9(kTemporalStructureMode1);
}
current_ss_idx_ = Add<kMaxGofSaved>(current_ss_idx_, 1);
scalability_structures_[current_ss_idx_] = gof;
scalability_structures_[current_ss_idx_].pid_start = frame->Id();
gof_info_.emplace(
unwrapped_tl0,
GofInfo(&scalability_structures_[current_ss_idx_], frame->Id()));
}
const auto gof_info_it = gof_info_.find(unwrapped_tl0);
if (gof_info_it == gof_info_.end())
return kStash;
info = &gof_info_it->second;
if (frame->frame_type() == VideoFrameType::kVideoFrameKey) {
frame->num_references = 0;
FrameReceivedVp9(frame->Id(), info);
FlattenFrameIdAndRefs(frame, codec_header.inter_layer_predicted);
return kHandOff;
}
} else if (frame->frame_type() == VideoFrameType::kVideoFrameKey) {
if (frame->SpatialIndex() == 0) {
RTC_LOG(LS_WARNING) << "Received keyframe without scalability structure";
return kDrop;
}
const auto gof_info_it = gof_info_.find(unwrapped_tl0);
if (gof_info_it == gof_info_.end())
return kStash;
info = &gof_info_it->second;
frame->num_references = 0;
FrameReceivedVp9(frame->Id(), info);
FlattenFrameIdAndRefs(frame, codec_header.inter_layer_predicted);
return kHandOff;
} else {
auto gof_info_it = gof_info_.find(
(codec_header.temporal_idx == 0) ? unwrapped_tl0 - 1 : unwrapped_tl0);
// Gof info for this frame is not available yet, stash this frame.
if (gof_info_it == gof_info_.end())
return kStash;
if (codec_header.temporal_idx == 0) {
gof_info_it = gof_info_
.emplace(unwrapped_tl0,
GofInfo(gof_info_it->second.gof, frame->Id()))
.first;
}
info = &gof_info_it->second;
}
// Clean up info for base layers that are too old.
int64_t old_tl0_pic_idx = unwrapped_tl0 - kMaxGofSaved;
auto clean_gof_info_to = gof_info_.lower_bound(old_tl0_pic_idx);
gof_info_.erase(gof_info_.begin(), clean_gof_info_to);
FrameReceivedVp9(frame->Id(), info);
// Make sure we don't miss any frame that could potentially have the
// up switch flag set.
if (MissingRequiredFrameVp9(frame->Id(), *info))
return kStash;
if (codec_header.temporal_up_switch)
up_switch_.emplace(frame->Id(), codec_header.temporal_idx);
// Clean out old info about up switch frames.
uint16_t old_picture_id = Subtract<kFrameIdLength>(frame->Id(), 50);
auto up_switch_erase_to = up_switch_.lower_bound(old_picture_id);
up_switch_.erase(up_switch_.begin(), up_switch_erase_to);
size_t diff =
ForwardDiff<uint16_t, kFrameIdLength>(info->gof->pid_start, frame->Id());
size_t gof_idx = diff % info->gof->num_frames_in_gof;
if (info->gof->num_ref_pics[gof_idx] > EncodedFrame::kMaxFrameReferences) {
return kDrop;
}
// Populate references according to the scalability structure.
frame->num_references = info->gof->num_ref_pics[gof_idx];
for (size_t i = 0; i < frame->num_references; ++i) {
frame->references[i] =
Subtract<kFrameIdLength>(frame->Id(), info->gof->pid_diff[gof_idx][i]);
// If this is a reference to a frame earlier than the last up switch point,
// then ignore this reference.
if (UpSwitchInIntervalVp9(frame->Id(), codec_header.temporal_idx,
frame->references[i])) {
--frame->num_references;
}
}
// Override GOF references.
if (!codec_header.inter_pic_predicted) {
frame->num_references = 0;
}
FlattenFrameIdAndRefs(frame, codec_header.inter_layer_predicted);
return kHandOff;
}
bool RtpVp9RefFinder::MissingRequiredFrameVp9(uint16_t picture_id,
const GofInfo& info) {
size_t diff =
ForwardDiff<uint16_t, kFrameIdLength>(info.gof->pid_start, picture_id);
size_t gof_idx = diff % info.gof->num_frames_in_gof;
size_t temporal_idx = info.gof->temporal_idx[gof_idx];
if (temporal_idx >= kMaxTemporalLayers) {
RTC_LOG(LS_WARNING) << "At most " << kMaxTemporalLayers
<< " temporal "
"layers are supported.";
return true;
}
// For every reference this frame has, check if there is a frame missing in
// the interval (`ref_pid`, `picture_id`) in any of the lower temporal
// layers. If so, we are missing a required frame.
uint8_t num_references = info.gof->num_ref_pics[gof_idx];
for (size_t i = 0; i < num_references; ++i) {
uint16_t ref_pid =
Subtract<kFrameIdLength>(picture_id, info.gof->pid_diff[gof_idx][i]);
for (size_t l = 0; l < temporal_idx; ++l) {
auto missing_frame_it = missing_frames_for_layer_[l].lower_bound(ref_pid);
if (missing_frame_it != missing_frames_for_layer_[l].end() &&
AheadOf<uint16_t, kFrameIdLength>(picture_id, *missing_frame_it)) {
return true;
}
}
}
return false;
}
void RtpVp9RefFinder::FrameReceivedVp9(uint16_t picture_id, GofInfo* info) {
int last_picture_id = info->last_picture_id;
size_t gof_size = std::min(info->gof->num_frames_in_gof, kMaxVp9FramesInGof);
// If there is a gap, find which temporal layer the missing frames
// belong to and add the frame as missing for that temporal layer.
// Otherwise, remove this frame from the set of missing frames.
if (AheadOf<uint16_t, kFrameIdLength>(picture_id, last_picture_id)) {
size_t diff = ForwardDiff<uint16_t, kFrameIdLength>(info->gof->pid_start,
last_picture_id);
size_t gof_idx = diff % gof_size;
last_picture_id = Add<kFrameIdLength>(last_picture_id, 1);
while (last_picture_id != picture_id) {
gof_idx = (gof_idx + 1) % gof_size;
RTC_CHECK(gof_idx < kMaxVp9FramesInGof);
size_t temporal_idx = info->gof->temporal_idx[gof_idx];
if (temporal_idx >= kMaxTemporalLayers) {
RTC_LOG(LS_WARNING) << "At most " << kMaxTemporalLayers
<< " temporal "
"layers are supported.";
return;
}
missing_frames_for_layer_[temporal_idx].insert(last_picture_id);
last_picture_id = Add<kFrameIdLength>(last_picture_id, 1);
}
info->last_picture_id = last_picture_id;
} else {
size_t diff =
ForwardDiff<uint16_t, kFrameIdLength>(info->gof->pid_start, picture_id);
size_t gof_idx = diff % gof_size;
RTC_CHECK(gof_idx < kMaxVp9FramesInGof);
size_t temporal_idx = info->gof->temporal_idx[gof_idx];
if (temporal_idx >= kMaxTemporalLayers) {
RTC_LOG(LS_WARNING) << "At most " << kMaxTemporalLayers
<< " temporal "
"layers are supported.";
return;
}
missing_frames_for_layer_[temporal_idx].erase(picture_id);
}
}
bool RtpVp9RefFinder::UpSwitchInIntervalVp9(uint16_t picture_id,
uint8_t temporal_idx,
uint16_t pid_ref) {
for (auto up_switch_it = up_switch_.upper_bound(pid_ref);
up_switch_it != up_switch_.end() &&
AheadOf<uint16_t, kFrameIdLength>(picture_id, up_switch_it->first);
++up_switch_it) {
if (up_switch_it->second < temporal_idx)
return true;
}
return false;
}
void RtpVp9RefFinder::RetryStashedFrames(
RtpFrameReferenceFinder::ReturnVector& res) {
bool complete_frame = false;
do {
complete_frame = false;
for (auto it = stashed_frames_.begin(); it != stashed_frames_.end();) {
const RTPVideoHeaderVP9& codec_header = absl::get<RTPVideoHeaderVP9>(
it->frame->GetRtpVideoHeader().video_type_header);
RTC_DCHECK(!codec_header.flexible_mode);
FrameDecision decision =
ManageFrameGof(it->frame.get(), codec_header, it->unwrapped_tl0);
switch (decision) {
case kStash:
++it;
break;
case kHandOff:
complete_frame = true;
res.push_back(std::move(it->frame));
[[fallthrough]];
case kDrop:
it = stashed_frames_.erase(it);
}
}
} while (complete_frame);
}
void RtpVp9RefFinder::FlattenFrameIdAndRefs(RtpFrameObject* frame,
bool inter_layer_predicted) {
for (size_t i = 0; i < frame->num_references; ++i) {
frame->references[i] =
unwrapper_.Unwrap(frame->references[i]) * kMaxSpatialLayers +
*frame->SpatialIndex();
}
frame->SetId(unwrapper_.Unwrap(frame->Id()) * kMaxSpatialLayers +
*frame->SpatialIndex());
if (inter_layer_predicted &&
frame->num_references + 1 <= EncodedFrame::kMaxFrameReferences) {
frame->references[frame->num_references] = frame->Id() - 1;
++frame->num_references;
}
}
void RtpVp9RefFinder::ClearTo(uint16_t seq_num) {
auto it = stashed_frames_.begin();
while (it != stashed_frames_.end()) {
if (AheadOf<uint16_t>(seq_num, it->frame->first_seq_num())) {
it = stashed_frames_.erase(it);
} else {
++it;
}
}
}
} // namespace webrtc