mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-16 23:30:48 +01:00

Adds separate priorities for audio and video retranmission. Done by adding an original type to RtpPacketToSend. Add possiblity to set TTL for audio nack, video nack and video packet separately. Oldest packet for these types are dropped when a new packet of that type is pushed to the pacer, or when the pacer switch current priority type to that priority. Effect is that: -pacer queue does not grow unlimited for these types if a TTL has been set. -an old packet is not sent. Bug: webrtc:15740 Change-Id: I38718bc570aebca54eacbded69824905f3694f41 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/331823 Commit-Queue: Per Kjellander <perkj@webrtc.org> Reviewed-by: Erik Språng <sprang@webrtc.org> Cr-Commit-Position: refs/heads/main@{#41414}
462 lines
17 KiB
C++
462 lines
17 KiB
C++
/*
|
|
* Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/pacing/prioritized_packet_queue.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <utility>
|
|
|
|
#include "absl/container/inlined_vector.h"
|
|
#include "absl/types/optional.h"
|
|
#include "api/units/time_delta.h"
|
|
#include "api/units/timestamp.h"
|
|
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
|
|
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/logging.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
constexpr int kAudioPrioLevel = 0;
|
|
|
|
int GetPriorityForType(
|
|
RtpPacketMediaType type,
|
|
absl::optional<RtpPacketToSend::OriginalType> original_type) {
|
|
// Lower number takes priority over higher.
|
|
switch (type) {
|
|
case RtpPacketMediaType::kAudio:
|
|
// Audio is always prioritized over other packet types.
|
|
return kAudioPrioLevel;
|
|
case RtpPacketMediaType::kRetransmission:
|
|
// Send retransmissions before new media. If original_type is set, audio
|
|
// retransmission is prioritized more than video retransmission.
|
|
if (original_type == RtpPacketToSend::OriginalType::kVideo) {
|
|
return kAudioPrioLevel + 2;
|
|
}
|
|
return kAudioPrioLevel + 1;
|
|
case RtpPacketMediaType::kVideo:
|
|
case RtpPacketMediaType::kForwardErrorCorrection:
|
|
// Video has "normal" priority, in the old speak.
|
|
// Send redundancy concurrently to video. If it is delayed it might have a
|
|
// lower chance of being useful.
|
|
return kAudioPrioLevel + 3;
|
|
case RtpPacketMediaType::kPadding:
|
|
// Packets that are in themselves likely useless, only sent to keep the
|
|
// BWE high.
|
|
return kAudioPrioLevel + 4;
|
|
}
|
|
RTC_CHECK_NOTREACHED();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
absl::InlinedVector<TimeDelta, PrioritizedPacketQueue::kNumPriorityLevels>
|
|
PrioritizedPacketQueue::ToTtlPerPrio(PacketQueueTTL packet_queue_ttl) {
|
|
absl::InlinedVector<TimeDelta, PrioritizedPacketQueue::kNumPriorityLevels>
|
|
ttl_per_prio(kNumPriorityLevels, TimeDelta::PlusInfinity());
|
|
ttl_per_prio[GetPriorityForType(RtpPacketMediaType::kRetransmission,
|
|
RtpPacketToSend::OriginalType::kAudio)] =
|
|
packet_queue_ttl.audio_retransmission;
|
|
ttl_per_prio[GetPriorityForType(RtpPacketMediaType::kRetransmission,
|
|
RtpPacketToSend::OriginalType::kVideo)] =
|
|
packet_queue_ttl.video_retransmission;
|
|
ttl_per_prio[GetPriorityForType(RtpPacketMediaType::kVideo, absl::nullopt)] =
|
|
packet_queue_ttl.video;
|
|
return ttl_per_prio;
|
|
}
|
|
|
|
DataSize PrioritizedPacketQueue::QueuedPacket::PacketSize() const {
|
|
return DataSize::Bytes(packet->payload_size() + packet->padding_size());
|
|
}
|
|
|
|
PrioritizedPacketQueue::StreamQueue::StreamQueue(Timestamp creation_time)
|
|
: last_enqueue_time_(creation_time), num_keyframe_packets_(0) {}
|
|
|
|
bool PrioritizedPacketQueue::StreamQueue::EnqueuePacket(QueuedPacket packet,
|
|
int priority_level) {
|
|
if (packet.packet->is_key_frame()) {
|
|
++num_keyframe_packets_;
|
|
}
|
|
bool first_packet_at_level = packets_[priority_level].empty();
|
|
packets_[priority_level].push_back(std::move(packet));
|
|
return first_packet_at_level;
|
|
}
|
|
|
|
PrioritizedPacketQueue::QueuedPacket
|
|
PrioritizedPacketQueue::StreamQueue::DequeuePacket(int priority_level) {
|
|
RTC_DCHECK(!packets_[priority_level].empty());
|
|
QueuedPacket packet = std::move(packets_[priority_level].front());
|
|
packets_[priority_level].pop_front();
|
|
if (packet.packet->is_key_frame()) {
|
|
RTC_DCHECK_GT(num_keyframe_packets_, 0);
|
|
--num_keyframe_packets_;
|
|
}
|
|
return packet;
|
|
}
|
|
|
|
bool PrioritizedPacketQueue::StreamQueue::HasPacketsAtPrio(
|
|
int priority_level) const {
|
|
return !packets_[priority_level].empty();
|
|
}
|
|
|
|
bool PrioritizedPacketQueue::StreamQueue::IsEmpty() const {
|
|
for (const std::deque<QueuedPacket>& queue : packets_) {
|
|
if (!queue.empty()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Timestamp PrioritizedPacketQueue::StreamQueue::LeadingPacketEnqueueTime(
|
|
int priority_level) const {
|
|
RTC_DCHECK(!packets_[priority_level].empty());
|
|
return packets_[priority_level].begin()->enqueue_time;
|
|
}
|
|
|
|
Timestamp PrioritizedPacketQueue::StreamQueue::LastEnqueueTime() const {
|
|
return last_enqueue_time_;
|
|
}
|
|
|
|
std::array<std::deque<PrioritizedPacketQueue::QueuedPacket>,
|
|
PrioritizedPacketQueue::kNumPriorityLevels>
|
|
PrioritizedPacketQueue::StreamQueue::DequeueAll() {
|
|
std::array<std::deque<QueuedPacket>, kNumPriorityLevels> packets_by_prio;
|
|
for (int i = 0; i < kNumPriorityLevels; ++i) {
|
|
packets_by_prio[i].swap(packets_[i]);
|
|
}
|
|
num_keyframe_packets_ = 0;
|
|
return packets_by_prio;
|
|
}
|
|
|
|
PrioritizedPacketQueue::PrioritizedPacketQueue(
|
|
Timestamp creation_time,
|
|
bool prioritize_audio_retransmission,
|
|
PacketQueueTTL packet_queue_ttl)
|
|
: prioritize_audio_retransmission_(prioritize_audio_retransmission),
|
|
time_to_live_per_prio_(ToTtlPerPrio(packet_queue_ttl)),
|
|
queue_time_sum_(TimeDelta::Zero()),
|
|
pause_time_sum_(TimeDelta::Zero()),
|
|
size_packets_(0),
|
|
size_packets_per_media_type_({}),
|
|
size_payload_(DataSize::Zero()),
|
|
last_update_time_(creation_time),
|
|
paused_(false),
|
|
last_culling_time_(creation_time),
|
|
top_active_prio_level_(-1) {}
|
|
|
|
void PrioritizedPacketQueue::Push(Timestamp enqueue_time,
|
|
std::unique_ptr<RtpPacketToSend> packet) {
|
|
StreamQueue* stream_queue;
|
|
auto [it, inserted] = streams_.emplace(packet->Ssrc(), nullptr);
|
|
if (inserted) {
|
|
it->second = std::make_unique<StreamQueue>(enqueue_time);
|
|
}
|
|
stream_queue = it->second.get();
|
|
|
|
auto enqueue_time_iterator =
|
|
enqueue_times_.insert(enqueue_times_.end(), enqueue_time);
|
|
RTC_DCHECK(packet->packet_type().has_value());
|
|
RtpPacketMediaType packet_type = packet->packet_type().value();
|
|
int prio_level =
|
|
GetPriorityForType(packet_type, prioritize_audio_retransmission_
|
|
? packet->original_packet_type()
|
|
: absl::nullopt);
|
|
PurgeOldPacketsAtPriorityLevel(prio_level, enqueue_time);
|
|
RTC_DCHECK_GE(prio_level, 0);
|
|
RTC_DCHECK_LT(prio_level, kNumPriorityLevels);
|
|
QueuedPacket queued_packed = {.packet = std::move(packet),
|
|
.enqueue_time = enqueue_time,
|
|
.enqueue_time_iterator = enqueue_time_iterator};
|
|
// In order to figure out how much time a packet has spent in the queue
|
|
// while not in a paused state, we subtract the total amount of time the
|
|
// queue has been paused so far, and when the packet is popped we subtract
|
|
// the total amount of time the queue has been paused at that moment. This
|
|
// way we subtract the total amount of time the packet has spent in the
|
|
// queue while in a paused state.
|
|
UpdateAverageQueueTime(enqueue_time);
|
|
queued_packed.enqueue_time -= pause_time_sum_;
|
|
++size_packets_;
|
|
++size_packets_per_media_type_[static_cast<size_t>(packet_type)];
|
|
size_payload_ += queued_packed.PacketSize();
|
|
|
|
if (stream_queue->EnqueuePacket(std::move(queued_packed), prio_level)) {
|
|
// Number packets at `prio_level` for this steam is now non-zero.
|
|
streams_by_prio_[prio_level].push_back(stream_queue);
|
|
}
|
|
if (top_active_prio_level_ < 0 || prio_level < top_active_prio_level_) {
|
|
top_active_prio_level_ = prio_level;
|
|
}
|
|
|
|
static constexpr TimeDelta kTimeout = TimeDelta::Millis(500);
|
|
if (enqueue_time - last_culling_time_ > kTimeout) {
|
|
for (auto it = streams_.begin(); it != streams_.end();) {
|
|
if (it->second->IsEmpty() &&
|
|
it->second->LastEnqueueTime() + kTimeout < enqueue_time) {
|
|
streams_.erase(it++);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
last_culling_time_ = enqueue_time;
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<RtpPacketToSend> PrioritizedPacketQueue::Pop() {
|
|
if (size_packets_ == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
RTC_DCHECK_GE(top_active_prio_level_, 0);
|
|
StreamQueue& stream_queue = *streams_by_prio_[top_active_prio_level_].front();
|
|
QueuedPacket packet = stream_queue.DequeuePacket(top_active_prio_level_);
|
|
DequeuePacketInternal(packet);
|
|
|
|
// Remove StreamQueue from head of fifo-queue for this prio level, and
|
|
// and add it to the end if it still has packets.
|
|
streams_by_prio_[top_active_prio_level_].pop_front();
|
|
if (stream_queue.HasPacketsAtPrio(top_active_prio_level_)) {
|
|
streams_by_prio_[top_active_prio_level_].push_back(&stream_queue);
|
|
} else {
|
|
MaybeUpdateTopPrioLevel();
|
|
}
|
|
|
|
return std::move(packet.packet);
|
|
}
|
|
|
|
int PrioritizedPacketQueue::SizeInPackets() const {
|
|
return size_packets_;
|
|
}
|
|
|
|
DataSize PrioritizedPacketQueue::SizeInPayloadBytes() const {
|
|
return size_payload_;
|
|
}
|
|
|
|
bool PrioritizedPacketQueue::Empty() const {
|
|
return size_packets_ == 0;
|
|
}
|
|
|
|
const std::array<int, kNumMediaTypes>&
|
|
PrioritizedPacketQueue::SizeInPacketsPerRtpPacketMediaType() const {
|
|
return size_packets_per_media_type_;
|
|
}
|
|
|
|
Timestamp PrioritizedPacketQueue::LeadingPacketEnqueueTime(
|
|
RtpPacketMediaType type) const {
|
|
RTC_DCHECK(type != RtpPacketMediaType::kRetransmission);
|
|
const int priority_level = GetPriorityForType(type, absl::nullopt);
|
|
if (streams_by_prio_[priority_level].empty()) {
|
|
return Timestamp::MinusInfinity();
|
|
}
|
|
return streams_by_prio_[priority_level].front()->LeadingPacketEnqueueTime(
|
|
priority_level);
|
|
}
|
|
|
|
Timestamp PrioritizedPacketQueue::LeadingPacketEnqueueTimeForRetransmission()
|
|
const {
|
|
if (!prioritize_audio_retransmission_) {
|
|
const int priority_level =
|
|
GetPriorityForType(RtpPacketMediaType::kRetransmission, absl::nullopt);
|
|
if (streams_by_prio_[priority_level].empty()) {
|
|
return Timestamp::PlusInfinity();
|
|
}
|
|
return streams_by_prio_[priority_level].front()->LeadingPacketEnqueueTime(
|
|
priority_level);
|
|
}
|
|
const int audio_priority_level =
|
|
GetPriorityForType(RtpPacketMediaType::kRetransmission,
|
|
RtpPacketToSend::OriginalType::kAudio);
|
|
const int video_priority_level =
|
|
GetPriorityForType(RtpPacketMediaType::kRetransmission,
|
|
RtpPacketToSend::OriginalType::kVideo);
|
|
|
|
Timestamp next_audio =
|
|
streams_by_prio_[audio_priority_level].empty()
|
|
? Timestamp::PlusInfinity()
|
|
: streams_by_prio_[audio_priority_level]
|
|
.front()
|
|
->LeadingPacketEnqueueTime(audio_priority_level);
|
|
Timestamp next_video =
|
|
streams_by_prio_[video_priority_level].empty()
|
|
? Timestamp::PlusInfinity()
|
|
: streams_by_prio_[video_priority_level]
|
|
.front()
|
|
->LeadingPacketEnqueueTime(video_priority_level);
|
|
return std::min(next_audio, next_video);
|
|
}
|
|
|
|
Timestamp PrioritizedPacketQueue::OldestEnqueueTime() const {
|
|
return enqueue_times_.empty() ? Timestamp::MinusInfinity()
|
|
: enqueue_times_.front();
|
|
}
|
|
|
|
TimeDelta PrioritizedPacketQueue::AverageQueueTime() const {
|
|
if (size_packets_ == 0) {
|
|
return TimeDelta::Zero();
|
|
}
|
|
return queue_time_sum_ / size_packets_;
|
|
}
|
|
|
|
void PrioritizedPacketQueue::UpdateAverageQueueTime(Timestamp now) {
|
|
RTC_CHECK_GE(now, last_update_time_);
|
|
if (now == last_update_time_) {
|
|
return;
|
|
}
|
|
|
|
TimeDelta delta = now - last_update_time_;
|
|
|
|
if (paused_) {
|
|
pause_time_sum_ += delta;
|
|
} else {
|
|
queue_time_sum_ += delta * size_packets_;
|
|
}
|
|
|
|
last_update_time_ = now;
|
|
}
|
|
|
|
void PrioritizedPacketQueue::SetPauseState(bool paused, Timestamp now) {
|
|
UpdateAverageQueueTime(now);
|
|
paused_ = paused;
|
|
}
|
|
|
|
void PrioritizedPacketQueue::RemovePacketsForSsrc(uint32_t ssrc) {
|
|
auto kv = streams_.find(ssrc);
|
|
if (kv != streams_.end()) {
|
|
// Dequeue all packets from the queue for this SSRC.
|
|
StreamQueue& queue = *kv->second;
|
|
std::array<std::deque<QueuedPacket>, kNumPriorityLevels> packets_by_prio =
|
|
queue.DequeueAll();
|
|
for (int i = 0; i < kNumPriorityLevels; ++i) {
|
|
std::deque<QueuedPacket>& packet_queue = packets_by_prio[i];
|
|
if (packet_queue.empty()) {
|
|
continue;
|
|
}
|
|
|
|
// First erase all packets at this prio level.
|
|
while (!packet_queue.empty()) {
|
|
QueuedPacket packet = std::move(packet_queue.front());
|
|
packet_queue.pop_front();
|
|
DequeuePacketInternal(packet);
|
|
}
|
|
|
|
// Next, deregister this `StreamQueue` from the round-robin tables.
|
|
RTC_DCHECK(!streams_by_prio_[i].empty());
|
|
if (streams_by_prio_[i].size() == 1) {
|
|
// This is the last and only queue that had packets for this prio level.
|
|
// Update the global top prio level if neccessary.
|
|
RTC_DCHECK(streams_by_prio_[i].front() == &queue);
|
|
streams_by_prio_[i].pop_front();
|
|
} else {
|
|
// More than stream had packets at this prio level, filter this one out.
|
|
std::deque<StreamQueue*> filtered_queue;
|
|
for (StreamQueue* queue_ptr : streams_by_prio_[i]) {
|
|
if (queue_ptr != &queue) {
|
|
filtered_queue.push_back(queue_ptr);
|
|
}
|
|
}
|
|
streams_by_prio_[i].swap(filtered_queue);
|
|
}
|
|
}
|
|
}
|
|
MaybeUpdateTopPrioLevel();
|
|
}
|
|
|
|
bool PrioritizedPacketQueue::HasKeyframePackets(uint32_t ssrc) const {
|
|
auto it = streams_.find(ssrc);
|
|
if (it != streams_.end()) {
|
|
return it->second->has_keyframe_packets();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void PrioritizedPacketQueue::DequeuePacketInternal(QueuedPacket& packet) {
|
|
--size_packets_;
|
|
RTC_DCHECK(packet.packet->packet_type().has_value());
|
|
RtpPacketMediaType packet_type = packet.packet->packet_type().value();
|
|
--size_packets_per_media_type_[static_cast<size_t>(packet_type)];
|
|
RTC_DCHECK_GE(size_packets_per_media_type_[static_cast<size_t>(packet_type)],
|
|
0);
|
|
size_payload_ -= packet.PacketSize();
|
|
|
|
// Calculate the total amount of time spent by this packet in the queue
|
|
// while in a non-paused state. Note that the `pause_time_sum_ms_` was
|
|
// subtracted from `packet.enqueue_time_ms` when the packet was pushed, and
|
|
// by subtracting it now we effectively remove the time spent in in the
|
|
// queue while in a paused state.
|
|
TimeDelta time_in_non_paused_state =
|
|
last_update_time_ - packet.enqueue_time - pause_time_sum_;
|
|
queue_time_sum_ -= time_in_non_paused_state;
|
|
|
|
// Set the time spent in the send queue, which is the per-packet equivalent of
|
|
// totalPacketSendDelay. The notion of being paused is an implementation
|
|
// detail that we do not want to expose, so it makes sense to report the
|
|
// metric excluding the pause time. This also avoids spikes in the metric.
|
|
// https://w3c.github.io/webrtc-stats/#dom-rtcoutboundrtpstreamstats-totalpacketsenddelay
|
|
packet.packet->set_time_in_send_queue(time_in_non_paused_state);
|
|
|
|
RTC_DCHECK(size_packets_ > 0 || queue_time_sum_ == TimeDelta::Zero());
|
|
|
|
RTC_CHECK(packet.enqueue_time_iterator != enqueue_times_.end());
|
|
enqueue_times_.erase(packet.enqueue_time_iterator);
|
|
}
|
|
|
|
void PrioritizedPacketQueue::MaybeUpdateTopPrioLevel() {
|
|
if (top_active_prio_level_ == -1 ||
|
|
streams_by_prio_[top_active_prio_level_].empty()) {
|
|
// No stream queues have packets at this prio level, find top priority
|
|
// that is not empty.
|
|
if (size_packets_ == 0) {
|
|
top_active_prio_level_ = -1;
|
|
} else {
|
|
for (int i = 0; i < kNumPriorityLevels; ++i) {
|
|
PurgeOldPacketsAtPriorityLevel(i, last_update_time_);
|
|
if (!streams_by_prio_[i].empty()) {
|
|
top_active_prio_level_ = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void PrioritizedPacketQueue::PurgeOldPacketsAtPriorityLevel(int prio_level,
|
|
Timestamp now) {
|
|
RTC_DCHECK(prio_level >= 0 && prio_level < kNumPriorityLevels);
|
|
TimeDelta time_to_live = time_to_live_per_prio_[prio_level];
|
|
if (time_to_live.IsInfinite()) {
|
|
return;
|
|
}
|
|
|
|
std::deque<StreamQueue*>& queues = streams_by_prio_[prio_level];
|
|
auto iter = queues.begin();
|
|
while (iter != queues.end()) {
|
|
StreamQueue* queue_ptr = *iter;
|
|
while (queue_ptr->HasPacketsAtPrio(prio_level) &&
|
|
(now - queue_ptr->LeadingPacketEnqueueTime(prio_level)) >
|
|
time_to_live) {
|
|
QueuedPacket packet = queue_ptr->DequeuePacket(prio_level);
|
|
RTC_LOG(LS_INFO) << "Dropping old packet on SSRC: "
|
|
<< packet.packet->Ssrc()
|
|
<< " seq:" << packet.packet->SequenceNumber()
|
|
<< " time in queue:" << (now - packet.enqueue_time).ms()
|
|
<< " ms";
|
|
DequeuePacketInternal(packet);
|
|
}
|
|
if (!queue_ptr->HasPacketsAtPrio(prio_level)) {
|
|
iter = queues.erase(iter);
|
|
} else {
|
|
++iter;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|