mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 22:00:47 +01:00

Values of these parameters are always the same and thus can be hardcoded Bug: None Change-Id: Ie19a1c6305d503ad2c92af503006a72b7981e178 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/298622 Auto-Submit: Danil Chapovalov <danilchap@webrtc.org> Commit-Queue: Per Kjellander <perkj@webrtc.org> Reviewed-by: Per Kjellander <perkj@webrtc.org> Cr-Commit-Position: refs/heads/main@{#39637}
530 lines
18 KiB
C++
530 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/remote_bitrate_estimator/inter_arrival.h"
|
|
|
|
#include <memory>
|
|
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
namespace testing {
|
|
|
|
enum {
|
|
kTimestampGroupLengthUs = 5000,
|
|
kMinStep = 20,
|
|
kTriggerNewGroupUs = kTimestampGroupLengthUs + kMinStep,
|
|
kBurstThresholdMs = 5,
|
|
kAbsSendTimeFraction = 18,
|
|
kAbsSendTimeInterArrivalUpshift = 8,
|
|
kInterArrivalShift = kAbsSendTimeFraction + kAbsSendTimeInterArrivalUpshift,
|
|
};
|
|
|
|
const double kRtpTimestampToMs = 1.0 / 90.0;
|
|
const double kAstToMs = 1000.0 / static_cast<double>(1 << kInterArrivalShift);
|
|
|
|
class InterArrivalTest : public ::testing::Test {
|
|
protected:
|
|
virtual void SetUp() {
|
|
inter_arrival_.reset(new InterArrival(kTimestampGroupLengthUs / 1000, 1.0));
|
|
inter_arrival_rtp_.reset(new InterArrival(
|
|
MakeRtpTimestamp(kTimestampGroupLengthUs), kRtpTimestampToMs));
|
|
inter_arrival_ast_.reset(
|
|
new InterArrival(MakeAbsSendTime(kTimestampGroupLengthUs), kAstToMs));
|
|
}
|
|
|
|
// Test that neither inter_arrival instance complete the timestamp group from
|
|
// the given data.
|
|
void ExpectFalse(int64_t timestamp_us,
|
|
int64_t arrival_time_ms,
|
|
size_t packet_size) {
|
|
InternalExpectFalse(inter_arrival_rtp_.get(),
|
|
MakeRtpTimestamp(timestamp_us), arrival_time_ms,
|
|
packet_size);
|
|
InternalExpectFalse(inter_arrival_ast_.get(), MakeAbsSendTime(timestamp_us),
|
|
arrival_time_ms, packet_size);
|
|
}
|
|
|
|
// Test that both inter_arrival instances complete the timestamp group from
|
|
// the given data and that all returned deltas are as expected (except
|
|
// timestamp delta, which is rounded from us to different ranges and must
|
|
// match within an interval, given in |timestamp_near].
|
|
void ExpectTrue(int64_t timestamp_us,
|
|
int64_t arrival_time_ms,
|
|
size_t packet_size,
|
|
int64_t expected_timestamp_delta_us,
|
|
int64_t expected_arrival_time_delta_ms,
|
|
int expected_packet_size_delta,
|
|
uint32_t timestamp_near) {
|
|
InternalExpectTrue(inter_arrival_rtp_.get(), MakeRtpTimestamp(timestamp_us),
|
|
arrival_time_ms, packet_size,
|
|
MakeRtpTimestamp(expected_timestamp_delta_us),
|
|
expected_arrival_time_delta_ms,
|
|
expected_packet_size_delta, timestamp_near);
|
|
InternalExpectTrue(inter_arrival_ast_.get(), MakeAbsSendTime(timestamp_us),
|
|
arrival_time_ms, packet_size,
|
|
MakeAbsSendTime(expected_timestamp_delta_us),
|
|
expected_arrival_time_delta_ms,
|
|
expected_packet_size_delta, timestamp_near << 8);
|
|
}
|
|
|
|
void WrapTestHelper(int64_t wrap_start_us,
|
|
uint32_t timestamp_near,
|
|
bool unorderly_within_group) {
|
|
// Step through the range of a 32 bit int, 1/4 at a time to not cause
|
|
// packets close to wraparound to be judged as out of order.
|
|
|
|
// G1
|
|
int64_t arrival_time = 17;
|
|
ExpectFalse(0, arrival_time, 1);
|
|
|
|
// G2
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
ExpectFalse(wrap_start_us / 4, arrival_time, 1);
|
|
|
|
// G3
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
ExpectTrue(wrap_start_us / 2, arrival_time, 1, wrap_start_us / 4, 6,
|
|
0, // Delta G2-G1
|
|
0);
|
|
|
|
// G4
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
int64_t g4_arrival_time = arrival_time;
|
|
ExpectTrue(wrap_start_us / 2 + wrap_start_us / 4, arrival_time, 1,
|
|
wrap_start_us / 4, 6, 0, // Delta G3-G2
|
|
timestamp_near);
|
|
|
|
// G5
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
ExpectTrue(wrap_start_us, arrival_time, 2, wrap_start_us / 4, 6,
|
|
0, // Delta G4-G3
|
|
timestamp_near);
|
|
for (int i = 0; i < 10; ++i) {
|
|
// Slowly step across the wrap point.
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
if (unorderly_within_group) {
|
|
// These packets arrive with timestamps in decreasing order but are
|
|
// nevertheless accumulated to group because their timestamps are higher
|
|
// than the initial timestamp of the group.
|
|
ExpectFalse(wrap_start_us + kMinStep * (9 - i), arrival_time, 1);
|
|
} else {
|
|
ExpectFalse(wrap_start_us + kMinStep * i, arrival_time, 1);
|
|
}
|
|
}
|
|
int64_t g5_arrival_time = arrival_time;
|
|
|
|
// This packet is out of order and should be dropped.
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
ExpectFalse(wrap_start_us - 100, arrival_time, 100);
|
|
|
|
// G6
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
int64_t g6_arrival_time = arrival_time;
|
|
ExpectTrue(wrap_start_us + kTriggerNewGroupUs, arrival_time, 10,
|
|
wrap_start_us / 4 + 9 * kMinStep,
|
|
g5_arrival_time - g4_arrival_time,
|
|
(2 + 10) - 1, // Delta G5-G4
|
|
timestamp_near);
|
|
|
|
// This packet is out of order and should be dropped.
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
ExpectFalse(wrap_start_us + kTimestampGroupLengthUs, arrival_time, 100);
|
|
|
|
// G7
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
ExpectTrue(wrap_start_us + 2 * kTriggerNewGroupUs, arrival_time, 100,
|
|
// Delta G6-G5
|
|
kTriggerNewGroupUs - 9 * kMinStep,
|
|
g6_arrival_time - g5_arrival_time, 10 - (2 + 10),
|
|
timestamp_near);
|
|
}
|
|
|
|
std::unique_ptr<InterArrival> inter_arrival_;
|
|
|
|
private:
|
|
static uint32_t MakeRtpTimestamp(int64_t us) {
|
|
return static_cast<uint32_t>(static_cast<uint64_t>(us * 90 + 500) / 1000);
|
|
}
|
|
|
|
static uint32_t MakeAbsSendTime(int64_t us) {
|
|
uint32_t absolute_send_time =
|
|
static_cast<uint32_t>(((static_cast<uint64_t>(us) << 18) + 500000) /
|
|
1000000) &
|
|
0x00FFFFFFul;
|
|
return absolute_send_time << 8;
|
|
}
|
|
|
|
static void InternalExpectFalse(InterArrival* inter_arrival,
|
|
uint32_t timestamp,
|
|
int64_t arrival_time_ms,
|
|
size_t packet_size) {
|
|
uint32_t dummy_timestamp = 101;
|
|
int64_t dummy_arrival_time_ms = 303;
|
|
int dummy_packet_size = 909;
|
|
bool computed = inter_arrival->ComputeDeltas(
|
|
timestamp, arrival_time_ms, arrival_time_ms, packet_size,
|
|
&dummy_timestamp, &dummy_arrival_time_ms, &dummy_packet_size);
|
|
EXPECT_EQ(computed, false);
|
|
EXPECT_EQ(101ul, dummy_timestamp);
|
|
EXPECT_EQ(303, dummy_arrival_time_ms);
|
|
EXPECT_EQ(909, dummy_packet_size);
|
|
}
|
|
|
|
static void InternalExpectTrue(InterArrival* inter_arrival,
|
|
uint32_t timestamp,
|
|
int64_t arrival_time_ms,
|
|
size_t packet_size,
|
|
uint32_t expected_timestamp_delta,
|
|
int64_t expected_arrival_time_delta_ms,
|
|
int expected_packet_size_delta,
|
|
uint32_t timestamp_near) {
|
|
uint32_t delta_timestamp = 101;
|
|
int64_t delta_arrival_time_ms = 303;
|
|
int delta_packet_size = 909;
|
|
bool computed = inter_arrival->ComputeDeltas(
|
|
timestamp, arrival_time_ms, arrival_time_ms, packet_size,
|
|
&delta_timestamp, &delta_arrival_time_ms, &delta_packet_size);
|
|
EXPECT_EQ(true, computed);
|
|
EXPECT_NEAR(expected_timestamp_delta, delta_timestamp, timestamp_near);
|
|
EXPECT_EQ(expected_arrival_time_delta_ms, delta_arrival_time_ms);
|
|
EXPECT_EQ(expected_packet_size_delta, delta_packet_size);
|
|
}
|
|
|
|
std::unique_ptr<InterArrival> inter_arrival_rtp_;
|
|
std::unique_ptr<InterArrival> inter_arrival_ast_;
|
|
};
|
|
|
|
TEST_F(InterArrivalTest, FirstPacket) {
|
|
ExpectFalse(0, 17, 1);
|
|
}
|
|
|
|
TEST_F(InterArrivalTest, FirstGroup) {
|
|
// G1
|
|
int64_t arrival_time = 17;
|
|
int64_t g1_arrival_time = arrival_time;
|
|
ExpectFalse(0, arrival_time, 1);
|
|
|
|
// G2
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
int64_t g2_arrival_time = arrival_time;
|
|
ExpectFalse(kTriggerNewGroupUs, arrival_time, 2);
|
|
|
|
// G3
|
|
// Only once the first packet of the third group arrives, do we see the deltas
|
|
// between the first two.
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
ExpectTrue(2 * kTriggerNewGroupUs, arrival_time, 1,
|
|
// Delta G2-G1
|
|
kTriggerNewGroupUs, g2_arrival_time - g1_arrival_time, 1, 0);
|
|
}
|
|
|
|
TEST_F(InterArrivalTest, SecondGroup) {
|
|
// G1
|
|
int64_t arrival_time = 17;
|
|
int64_t g1_arrival_time = arrival_time;
|
|
ExpectFalse(0, arrival_time, 1);
|
|
|
|
// G2
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
int64_t g2_arrival_time = arrival_time;
|
|
ExpectFalse(kTriggerNewGroupUs, arrival_time, 2);
|
|
|
|
// G3
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
int64_t g3_arrival_time = arrival_time;
|
|
ExpectTrue(2 * kTriggerNewGroupUs, arrival_time, 1,
|
|
// Delta G2-G1
|
|
kTriggerNewGroupUs, g2_arrival_time - g1_arrival_time, 1, 0);
|
|
|
|
// G4
|
|
// First packet of 4th group yields deltas between group 2 and 3.
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
ExpectTrue(3 * kTriggerNewGroupUs, arrival_time, 2,
|
|
// Delta G3-G2
|
|
kTriggerNewGroupUs, g3_arrival_time - g2_arrival_time, -1, 0);
|
|
}
|
|
|
|
TEST_F(InterArrivalTest, AccumulatedGroup) {
|
|
// G1
|
|
int64_t arrival_time = 17;
|
|
int64_t g1_arrival_time = arrival_time;
|
|
ExpectFalse(0, arrival_time, 1);
|
|
|
|
// G2
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
ExpectFalse(kTriggerNewGroupUs, 28, 2);
|
|
int64_t timestamp = kTriggerNewGroupUs;
|
|
for (int i = 0; i < 10; ++i) {
|
|
// A bunch of packets arriving within the same group.
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
timestamp += kMinStep;
|
|
ExpectFalse(timestamp, arrival_time, 1);
|
|
}
|
|
int64_t g2_arrival_time = arrival_time;
|
|
int64_t g2_timestamp = timestamp;
|
|
|
|
// G3
|
|
arrival_time = 500;
|
|
ExpectTrue(2 * kTriggerNewGroupUs, arrival_time, 100, g2_timestamp,
|
|
g2_arrival_time - g1_arrival_time,
|
|
(2 + 10) - 1, // Delta G2-G1
|
|
0);
|
|
}
|
|
|
|
TEST_F(InterArrivalTest, OutOfOrderPacket) {
|
|
// G1
|
|
int64_t arrival_time = 17;
|
|
int64_t timestamp = 0;
|
|
ExpectFalse(timestamp, arrival_time, 1);
|
|
int64_t g1_timestamp = timestamp;
|
|
int64_t g1_arrival_time = arrival_time;
|
|
|
|
// G2
|
|
arrival_time += 11;
|
|
timestamp += kTriggerNewGroupUs;
|
|
ExpectFalse(timestamp, 28, 2);
|
|
for (int i = 0; i < 10; ++i) {
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
timestamp += kMinStep;
|
|
ExpectFalse(timestamp, arrival_time, 1);
|
|
}
|
|
int64_t g2_timestamp = timestamp;
|
|
int64_t g2_arrival_time = arrival_time;
|
|
|
|
// This packet is out of order and should be dropped.
|
|
arrival_time = 281;
|
|
ExpectFalse(g1_timestamp, arrival_time, 100);
|
|
|
|
// G3
|
|
arrival_time = 500;
|
|
timestamp = 2 * kTriggerNewGroupUs;
|
|
ExpectTrue(timestamp, arrival_time, 100,
|
|
// Delta G2-G1
|
|
g2_timestamp - g1_timestamp, g2_arrival_time - g1_arrival_time,
|
|
(2 + 10) - 1, 0);
|
|
}
|
|
|
|
TEST_F(InterArrivalTest, OutOfOrderWithinGroup) {
|
|
// G1
|
|
int64_t arrival_time = 17;
|
|
int64_t timestamp = 0;
|
|
ExpectFalse(timestamp, arrival_time, 1);
|
|
int64_t g1_timestamp = timestamp;
|
|
int64_t g1_arrival_time = arrival_time;
|
|
|
|
// G2
|
|
timestamp += kTriggerNewGroupUs;
|
|
arrival_time += 11;
|
|
ExpectFalse(kTriggerNewGroupUs, 28, 2);
|
|
timestamp += 10 * kMinStep;
|
|
int64_t g2_timestamp = timestamp;
|
|
for (int i = 0; i < 10; ++i) {
|
|
// These packets arrive with timestamps in decreasing order but are
|
|
// nevertheless accumulated to group because their timestamps are higher
|
|
// than the initial timestamp of the group.
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
ExpectFalse(timestamp, arrival_time, 1);
|
|
timestamp -= kMinStep;
|
|
}
|
|
int64_t g2_arrival_time = arrival_time;
|
|
|
|
// However, this packet is deemed out of order and should be dropped.
|
|
arrival_time = 281;
|
|
timestamp = g1_timestamp;
|
|
ExpectFalse(timestamp, arrival_time, 100);
|
|
|
|
// G3
|
|
timestamp = 2 * kTriggerNewGroupUs;
|
|
arrival_time = 500;
|
|
ExpectTrue(timestamp, arrival_time, 100, g2_timestamp - g1_timestamp,
|
|
g2_arrival_time - g1_arrival_time, (2 + 10) - 1, 0);
|
|
}
|
|
|
|
TEST_F(InterArrivalTest, TwoBursts) {
|
|
// G1
|
|
int64_t g1_arrival_time = 17;
|
|
ExpectFalse(0, g1_arrival_time, 1);
|
|
|
|
// G2
|
|
int64_t timestamp = kTriggerNewGroupUs;
|
|
int64_t arrival_time = 100; // Simulate no packets arriving for 100 ms.
|
|
for (int i = 0; i < 10; ++i) {
|
|
// A bunch of packets arriving in one burst (within 5 ms apart).
|
|
timestamp += 30000;
|
|
arrival_time += kBurstThresholdMs;
|
|
ExpectFalse(timestamp, arrival_time, 1);
|
|
}
|
|
int64_t g2_arrival_time = arrival_time;
|
|
int64_t g2_timestamp = timestamp;
|
|
|
|
// G3
|
|
timestamp += 30000;
|
|
arrival_time += kBurstThresholdMs + 1;
|
|
ExpectTrue(timestamp, arrival_time, 100, g2_timestamp,
|
|
g2_arrival_time - g1_arrival_time,
|
|
10 - 1, // Delta G2-G1
|
|
0);
|
|
}
|
|
|
|
TEST_F(InterArrivalTest, NoBursts) {
|
|
// G1
|
|
ExpectFalse(0, 17, 1);
|
|
|
|
// G2
|
|
int64_t timestamp = kTriggerNewGroupUs;
|
|
int64_t arrival_time = 28;
|
|
ExpectFalse(timestamp, arrival_time, 2);
|
|
|
|
// G3
|
|
ExpectTrue(kTriggerNewGroupUs + 30000, arrival_time + kBurstThresholdMs + 1,
|
|
100, timestamp - 0, arrival_time - 17,
|
|
2 - 1, // Delta G2-G1
|
|
0);
|
|
}
|
|
|
|
// Yields 0xfffffffe when converted to internal representation in
|
|
// inter_arrival_rtp_ and inter_arrival_ast_ respectively.
|
|
static const int64_t kStartRtpTimestampWrapUs = 47721858827;
|
|
static const int64_t kStartAbsSendTimeWrapUs = 63999995;
|
|
|
|
TEST_F(InterArrivalTest, RtpTimestampWrap) {
|
|
WrapTestHelper(kStartRtpTimestampWrapUs, 1, false);
|
|
}
|
|
|
|
TEST_F(InterArrivalTest, AbsSendTimeWrap) {
|
|
WrapTestHelper(kStartAbsSendTimeWrapUs, 1, false);
|
|
}
|
|
|
|
TEST_F(InterArrivalTest, RtpTimestampWrapOutOfOrderWithinGroup) {
|
|
WrapTestHelper(kStartRtpTimestampWrapUs, 1, true);
|
|
}
|
|
|
|
TEST_F(InterArrivalTest, AbsSendTimeWrapOutOfOrderWithinGroup) {
|
|
WrapTestHelper(kStartAbsSendTimeWrapUs, 1, true);
|
|
}
|
|
|
|
TEST_F(InterArrivalTest, PositiveArrivalTimeJump) {
|
|
const size_t kPacketSize = 1000;
|
|
uint32_t send_time_ms = 10000;
|
|
int64_t arrival_time_ms = 20000;
|
|
int64_t system_time_ms = 30000;
|
|
|
|
uint32_t send_delta;
|
|
int64_t arrival_delta;
|
|
int size_delta;
|
|
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
|
|
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
|
|
&arrival_delta, &size_delta));
|
|
|
|
const int kTimeDeltaMs = 30;
|
|
send_time_ms += kTimeDeltaMs;
|
|
arrival_time_ms += kTimeDeltaMs;
|
|
system_time_ms += kTimeDeltaMs;
|
|
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
|
|
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
|
|
&arrival_delta, &size_delta));
|
|
|
|
send_time_ms += kTimeDeltaMs;
|
|
arrival_time_ms += kTimeDeltaMs + InterArrival::kArrivalTimeOffsetThresholdMs;
|
|
system_time_ms += kTimeDeltaMs;
|
|
EXPECT_TRUE(inter_arrival_->ComputeDeltas(
|
|
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
|
|
&arrival_delta, &size_delta));
|
|
EXPECT_EQ(kTimeDeltaMs, static_cast<int>(send_delta));
|
|
EXPECT_EQ(kTimeDeltaMs, arrival_delta);
|
|
EXPECT_EQ(size_delta, 0);
|
|
|
|
send_time_ms += kTimeDeltaMs;
|
|
arrival_time_ms += kTimeDeltaMs;
|
|
system_time_ms += kTimeDeltaMs;
|
|
// The previous arrival time jump should now be detected and cause a reset.
|
|
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
|
|
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
|
|
&arrival_delta, &size_delta));
|
|
|
|
// The two next packets will not give a valid delta since we're in the initial
|
|
// state.
|
|
for (int i = 0; i < 2; ++i) {
|
|
send_time_ms += kTimeDeltaMs;
|
|
arrival_time_ms += kTimeDeltaMs;
|
|
system_time_ms += kTimeDeltaMs;
|
|
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
|
|
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
|
|
&arrival_delta, &size_delta));
|
|
}
|
|
|
|
send_time_ms += kTimeDeltaMs;
|
|
arrival_time_ms += kTimeDeltaMs;
|
|
system_time_ms += kTimeDeltaMs;
|
|
EXPECT_TRUE(inter_arrival_->ComputeDeltas(
|
|
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
|
|
&arrival_delta, &size_delta));
|
|
EXPECT_EQ(kTimeDeltaMs, static_cast<int>(send_delta));
|
|
EXPECT_EQ(kTimeDeltaMs, arrival_delta);
|
|
EXPECT_EQ(size_delta, 0);
|
|
}
|
|
|
|
TEST_F(InterArrivalTest, NegativeArrivalTimeJump) {
|
|
const size_t kPacketSize = 1000;
|
|
uint32_t send_time_ms = 10000;
|
|
int64_t arrival_time_ms = 20000;
|
|
int64_t system_time_ms = 30000;
|
|
|
|
uint32_t send_delta;
|
|
int64_t arrival_delta;
|
|
int size_delta;
|
|
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
|
|
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
|
|
&arrival_delta, &size_delta));
|
|
|
|
const int kTimeDeltaMs = 30;
|
|
send_time_ms += kTimeDeltaMs;
|
|
arrival_time_ms += kTimeDeltaMs;
|
|
system_time_ms += kTimeDeltaMs;
|
|
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
|
|
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
|
|
&arrival_delta, &size_delta));
|
|
|
|
send_time_ms += kTimeDeltaMs;
|
|
arrival_time_ms += kTimeDeltaMs;
|
|
system_time_ms += kTimeDeltaMs;
|
|
EXPECT_TRUE(inter_arrival_->ComputeDeltas(
|
|
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
|
|
&arrival_delta, &size_delta));
|
|
EXPECT_EQ(kTimeDeltaMs, static_cast<int>(send_delta));
|
|
EXPECT_EQ(kTimeDeltaMs, arrival_delta);
|
|
EXPECT_EQ(size_delta, 0);
|
|
|
|
// Three out of order will fail, after that we will be reset and two more will
|
|
// fail before we get our first valid delta after the reset.
|
|
arrival_time_ms -= 1000;
|
|
for (int i = 0; i < InterArrival::kReorderedResetThreshold + 3; ++i) {
|
|
send_time_ms += kTimeDeltaMs;
|
|
arrival_time_ms += kTimeDeltaMs;
|
|
system_time_ms += kTimeDeltaMs;
|
|
// The previous arrival time jump should now be detected and cause a reset.
|
|
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
|
|
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
|
|
&arrival_delta, &size_delta));
|
|
}
|
|
|
|
send_time_ms += kTimeDeltaMs;
|
|
arrival_time_ms += kTimeDeltaMs;
|
|
system_time_ms += kTimeDeltaMs;
|
|
EXPECT_TRUE(inter_arrival_->ComputeDeltas(
|
|
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
|
|
&arrival_delta, &size_delta));
|
|
EXPECT_EQ(kTimeDeltaMs, static_cast<int>(send_delta));
|
|
EXPECT_EQ(kTimeDeltaMs, arrival_delta);
|
|
EXPECT_EQ(size_delta, 0);
|
|
}
|
|
} // namespace testing
|
|
} // namespace webrtc
|