webrtc/modules/video_coding/codecs/test/videoprocessor.cc
Sergey Silkin 86684960b3 Adding layering configurator and rate allocator for VP9 SVC.
The configurator decides number of spatial layers, their resolution
and bitrate thresholds based on given input resolution and maximum
number of spatial layers.

The allocator distributes available bitrate across spatial and
temporal layers. If there is not enough bitrate to provide acceptable
quality for all spatial layers allocator disables enhancement layers
one by one until the condition is met or number of layers is reduced
to one.

VP9 SVC related unit tests have been updated. Input resolution and
bitrate in these tests have been increased to the level enough to
provide desirable number of spatial layers.

Bug: webrtc:8518
Change-Id: I9df790920227c7f7dd4d42a50a856c22f0f4389b
Reviewed-on: https://webrtc-review.googlesource.com/60340
Commit-Queue: Sergey Silkin <ssilkin@webrtc.org>
Reviewed-by: Erik Språng <sprang@webrtc.org>
Reviewed-by: Stefan Holmer <stefan@webrtc.org>
Reviewed-by: Rasmus Brandt <brandtr@webrtc.org>
Reviewed-by: Michael Horowitz <mhoro@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#22672}
2018-03-29 10:16:47 +00:00

506 lines
21 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/test/videoprocessor.h"
#include <algorithm>
#include <limits>
#include <utility>
#include "api/video/i420_buffer.h"
#include "common_types.h" // NOLINT(build/include)
#include "common_video/h264/h264_common.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/video_coding/codecs/vp8/simulcast_rate_allocator.h"
#include "modules/video_coding/include/video_codec_initializer.h"
#include "modules/video_coding/include/video_error_codes.h"
#include "modules/video_coding/utility/default_video_bitrate_allocator.h"
#include "rtc_base/checks.h"
#include "rtc_base/timeutils.h"
#include "test/gtest.h"
#include "third_party/libyuv/include/libyuv/compare.h"
#include "third_party/libyuv/include/libyuv/scale.h"
namespace webrtc {
namespace test {
namespace {
const int kMsToRtpTimestamp = kVideoPayloadTypeFrequency / 1000;
const int kMaxBufferedInputFrames = 10;
size_t GetMaxNaluSizeBytes(const EncodedImage& encoded_frame,
const TestConfig& config) {
if (config.codec_settings.codecType != kVideoCodecH264)
return 0;
std::vector<webrtc::H264::NaluIndex> nalu_indices =
webrtc::H264::FindNaluIndices(encoded_frame._buffer,
encoded_frame._length);
RTC_CHECK(!nalu_indices.empty());
size_t max_size = 0;
for (const webrtc::H264::NaluIndex& index : nalu_indices)
max_size = std::max(max_size, index.payload_size);
return max_size;
}
void GetLayerIndices(const CodecSpecificInfo& codec_specific,
size_t* simulcast_svc_idx,
size_t* temporal_idx) {
if (codec_specific.codecType == kVideoCodecVP8) {
*simulcast_svc_idx = codec_specific.codecSpecific.VP8.simulcastIdx;
*temporal_idx = codec_specific.codecSpecific.VP8.temporalIdx;
} else if (codec_specific.codecType == kVideoCodecVP9) {
*simulcast_svc_idx = codec_specific.codecSpecific.VP9.spatial_idx;
*temporal_idx = codec_specific.codecSpecific.VP9.temporal_idx;
}
if (*simulcast_svc_idx == kNoSpatialIdx) {
*simulcast_svc_idx = 0;
}
if (*temporal_idx == kNoTemporalIdx) {
*temporal_idx = 0;
}
}
int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) {
int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec;
RTC_DCHECK_GE(diff_us, std::numeric_limits<int>::min());
RTC_DCHECK_LE(diff_us, std::numeric_limits<int>::max());
return static_cast<int>(diff_us);
}
void ExtractI420BufferWithSize(const VideoFrame& image,
int width,
int height,
rtc::Buffer* buffer) {
if (image.width() != width || image.height() != height) {
EXPECT_DOUBLE_EQ(static_cast<double>(width) / height,
static_cast<double>(image.width()) / image.height());
// Same aspect ratio, no cropping needed.
rtc::scoped_refptr<I420Buffer> scaled(I420Buffer::Create(width, height));
scaled->ScaleFrom(*image.video_frame_buffer()->ToI420());
size_t length =
CalcBufferSize(VideoType::kI420, scaled->width(), scaled->height());
buffer->SetSize(length);
RTC_CHECK_NE(ExtractBuffer(scaled, length, buffer->data()), -1);
return;
}
// No resize.
size_t length =
CalcBufferSize(VideoType::kI420, image.width(), image.height());
buffer->SetSize(length);
RTC_CHECK_NE(ExtractBuffer(image, length, buffer->data()), -1);
}
void CalculateFrameQuality(const I420BufferInterface& ref_buffer,
const I420BufferInterface& dec_buffer,
FrameStatistics* frame_stat) {
if (ref_buffer.width() != dec_buffer.width() ||
ref_buffer.height() != dec_buffer.height()) {
RTC_CHECK_GE(ref_buffer.width(), dec_buffer.width());
RTC_CHECK_GE(ref_buffer.height(), dec_buffer.height());
// Downscale reference frame.
rtc::scoped_refptr<I420Buffer> scaled_buffer =
I420Buffer::Create(dec_buffer.width(), dec_buffer.height());
I420Scale(ref_buffer.DataY(), ref_buffer.StrideY(), ref_buffer.DataU(),
ref_buffer.StrideU(), ref_buffer.DataV(), ref_buffer.StrideV(),
ref_buffer.width(), ref_buffer.height(),
scaled_buffer->MutableDataY(), scaled_buffer->StrideY(),
scaled_buffer->MutableDataU(), scaled_buffer->StrideU(),
scaled_buffer->MutableDataV(), scaled_buffer->StrideV(),
scaled_buffer->width(), scaled_buffer->height(),
libyuv::kFilterBox);
CalculateFrameQuality(*scaled_buffer, dec_buffer, frame_stat);
} else {
const uint64_t sse_y = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataY(), dec_buffer.StrideY(), ref_buffer.DataY(),
ref_buffer.StrideY(), dec_buffer.width(), dec_buffer.height());
const uint64_t sse_u = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataU(), dec_buffer.StrideU(), ref_buffer.DataU(),
ref_buffer.StrideU(), dec_buffer.width() / 2, dec_buffer.height() / 2);
const uint64_t sse_v = libyuv::ComputeSumSquareErrorPlane(
dec_buffer.DataV(), dec_buffer.StrideV(), ref_buffer.DataV(),
ref_buffer.StrideV(), dec_buffer.width() / 2, dec_buffer.height() / 2);
const size_t num_y_samples = dec_buffer.width() * dec_buffer.height();
const size_t num_u_samples =
dec_buffer.width() / 2 * dec_buffer.height() / 2;
frame_stat->psnr_y = libyuv::SumSquareErrorToPsnr(sse_y, num_y_samples);
frame_stat->psnr_u = libyuv::SumSquareErrorToPsnr(sse_u, num_u_samples);
frame_stat->psnr_v = libyuv::SumSquareErrorToPsnr(sse_v, num_u_samples);
frame_stat->psnr = libyuv::SumSquareErrorToPsnr(
sse_y + sse_u + sse_v, num_y_samples + 2 * num_u_samples);
frame_stat->ssim = I420SSIM(ref_buffer, dec_buffer);
}
}
} // namespace
VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder,
VideoDecoderList* decoders,
FrameReader* input_frame_reader,
const TestConfig& config,
Stats* stats,
IvfFileWriterList* encoded_frame_writers,
FrameWriterList* decoded_frame_writers)
: config_(config),
num_simulcast_or_spatial_layers_(
std::max(config_.NumberOfSimulcastStreams(),
config_.NumberOfSpatialLayers())),
stats_(stats),
encoder_(encoder),
decoders_(decoders),
bitrate_allocator_(VideoCodecInitializer::CreateBitrateAllocator(
config_.codec_settings)),
framerate_fps_(0),
encode_callback_(this),
decode_callback_(this),
input_frame_reader_(input_frame_reader),
merged_encoded_frames_(num_simulcast_or_spatial_layers_),
encoded_frame_writers_(encoded_frame_writers),
decoded_frame_writers_(decoded_frame_writers),
last_inputed_frame_num_(0),
last_inputed_timestamp_(0),
first_encoded_frame_(num_simulcast_or_spatial_layers_, true),
last_encoded_frame_num_(num_simulcast_or_spatial_layers_),
first_decoded_frame_(num_simulcast_or_spatial_layers_, true),
last_decoded_frame_num_(num_simulcast_or_spatial_layers_) {
// Sanity checks.
RTC_CHECK(rtc::TaskQueue::Current())
<< "VideoProcessor must be run on a task queue.";
RTC_CHECK(encoder);
RTC_CHECK(decoders);
RTC_CHECK_EQ(decoders->size(), num_simulcast_or_spatial_layers_);
RTC_CHECK(input_frame_reader);
RTC_CHECK(stats);
RTC_CHECK(!encoded_frame_writers ||
encoded_frame_writers->size() == num_simulcast_or_spatial_layers_);
RTC_CHECK(!decoded_frame_writers ||
decoded_frame_writers->size() == num_simulcast_or_spatial_layers_);
// Setup required callbacks for the encoder and decoder and initialize them.
RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_),
WEBRTC_VIDEO_CODEC_OK);
// Initialize codecs so that they are ready to receive frames.
RTC_CHECK_EQ(encoder_->InitEncode(&config_.codec_settings,
static_cast<int>(config_.NumberOfCores()),
config_.max_payload_size_bytes),
WEBRTC_VIDEO_CODEC_OK);
for (auto& decoder : *decoders_) {
RTC_CHECK_EQ(decoder->InitDecode(&config_.codec_settings,
static_cast<int>(config_.NumberOfCores())),
WEBRTC_VIDEO_CODEC_OK);
RTC_CHECK_EQ(decoder->RegisterDecodeCompleteCallback(&decode_callback_),
WEBRTC_VIDEO_CODEC_OK);
}
}
VideoProcessor::~VideoProcessor() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
// Explicitly reset codecs, in case they don't do that themselves when they
// go out of scope.
RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK);
encoder_->RegisterEncodeCompleteCallback(nullptr);
for (auto& decoder : *decoders_) {
RTC_CHECK_EQ(decoder->Release(), WEBRTC_VIDEO_CODEC_OK);
decoder->RegisterDecodeCompleteCallback(nullptr);
}
// Sanity check.
RTC_CHECK_LE(input_frames_.size(), kMaxBufferedInputFrames);
// Deal with manual memory management of EncodedImage's.
for (size_t simulcast_svc_idx = 0;
simulcast_svc_idx < num_simulcast_or_spatial_layers_;
++simulcast_svc_idx) {
uint8_t* buffer = merged_encoded_frames_.at(simulcast_svc_idx)._buffer;
if (buffer) {
delete[] buffer;
}
}
}
void VideoProcessor::ProcessFrame() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
const size_t frame_number = last_inputed_frame_num_++;
// Get input frame and store for future quality calculation.
rtc::scoped_refptr<I420BufferInterface> buffer =
input_frame_reader_->ReadFrame();
RTC_CHECK(buffer) << "Tried to read too many frames from the file.";
const size_t timestamp =
last_inputed_timestamp_ + kVideoPayloadTypeFrequency / framerate_fps_;
VideoFrame input_frame(buffer, static_cast<uint32_t>(timestamp),
static_cast<int64_t>(timestamp / kMsToRtpTimestamp),
webrtc::kVideoRotation_0);
// Store input frame as a reference for quality calculations.
if (config_.decode && !config_.measure_cpu) {
input_frames_.emplace(frame_number, input_frame);
}
last_inputed_timestamp_ = timestamp;
// Create frame statistics object for all simulcast/spatial layers.
for (size_t simulcast_svc_idx = 0;
simulcast_svc_idx < num_simulcast_or_spatial_layers_;
++simulcast_svc_idx) {
stats_->AddFrame(timestamp, simulcast_svc_idx);
}
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
const int64_t encode_start_ns = rtc::TimeNanos();
for (size_t simulcast_svc_idx = 0;
simulcast_svc_idx < num_simulcast_or_spatial_layers_;
++simulcast_svc_idx) {
FrameStatistics* frame_stat =
stats_->GetFrame(frame_number, simulcast_svc_idx);
frame_stat->encode_start_ns = encode_start_ns;
}
// Encode.
const std::vector<FrameType> frame_types =
config_.FrameTypeForFrame(frame_number);
const int encode_return_code =
encoder_->Encode(input_frame, nullptr, &frame_types);
for (size_t simulcast_svc_idx = 0;
simulcast_svc_idx < num_simulcast_or_spatial_layers_;
++simulcast_svc_idx) {
FrameStatistics* frame_stat =
stats_->GetFrame(frame_number, simulcast_svc_idx);
frame_stat->encode_return_code = encode_return_code;
}
}
void VideoProcessor::SetRates(size_t bitrate_kbps, size_t framerate_fps) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
framerate_fps_ = static_cast<uint32_t>(framerate_fps);
bitrate_allocation_ = bitrate_allocator_->GetAllocation(
static_cast<uint32_t>(bitrate_kbps * 1000), framerate_fps_);
const int set_rates_result =
encoder_->SetRateAllocation(bitrate_allocation_, framerate_fps_);
RTC_DCHECK_GE(set_rates_result, 0)
<< "Failed to update encoder with new rate " << bitrate_kbps << ".";
}
void VideoProcessor::FrameEncoded(
const webrtc::EncodedImage& encoded_image,
const webrtc::CodecSpecificInfo& codec_specific) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
const int64_t encode_stop_ns = rtc::TimeNanos();
const VideoCodecType codec_type = codec_specific.codecType;
if (config_.encoded_frame_checker) {
config_.encoded_frame_checker->CheckEncodedFrame(codec_type, encoded_image);
}
// Layer metadata.
size_t simulcast_svc_idx = 0;
size_t temporal_idx = 0;
GetLayerIndices(codec_specific, &simulcast_svc_idx, &temporal_idx);
const size_t frame_wxh =
encoded_image._encodedWidth * encoded_image._encodedHeight;
frame_wxh_to_simulcast_svc_idx_[frame_wxh] = simulcast_svc_idx;
FrameStatistics* frame_stat = stats_->GetFrameWithTimestamp(
encoded_image._timeStamp, simulcast_svc_idx);
const size_t frame_number = frame_stat->frame_number;
// Ensure that the encode order is monotonically increasing, within this
// simulcast/spatial layer.
RTC_CHECK(first_encoded_frame_[simulcast_svc_idx] ||
last_encoded_frame_num_[simulcast_svc_idx] < frame_number);
// Ensure SVC spatial layers are delivered in ascending order.
if (!first_encoded_frame_[simulcast_svc_idx] &&
config_.NumberOfSpatialLayers() > 1) {
for (size_t i = 0; i < simulcast_svc_idx; ++i) {
RTC_CHECK_LE(last_encoded_frame_num_[i], frame_number);
}
for (size_t i = simulcast_svc_idx + 1; i < num_simulcast_or_spatial_layers_;
++i) {
RTC_CHECK_GT(frame_number, last_encoded_frame_num_[i]);
}
}
first_encoded_frame_[simulcast_svc_idx] = false;
last_encoded_frame_num_[simulcast_svc_idx] = frame_number;
// Update frame statistics.
frame_stat->encoding_successful = true;
frame_stat->encode_time_us =
GetElapsedTimeMicroseconds(frame_stat->encode_start_ns, encode_stop_ns);
frame_stat->target_bitrate_kbps = (bitrate_allocation_.GetTemporalLayerSum(
simulcast_svc_idx, temporal_idx) +
500) /
1000;
frame_stat->length_bytes = encoded_image._length;
frame_stat->frame_type = encoded_image._frameType;
frame_stat->temporal_layer_idx = temporal_idx;
frame_stat->simulcast_svc_idx = simulcast_svc_idx;
if (codec_type == kVideoCodecVP9) {
const CodecSpecificInfoVP9& vp9_info = codec_specific.codecSpecific.VP9;
frame_stat->inter_layer_predicted = vp9_info.inter_layer_predicted;
}
frame_stat->max_nalu_size_bytes = GetMaxNaluSizeBytes(encoded_image, config_);
frame_stat->qp = encoded_image.qp_;
const webrtc::EncodedImage* encoded_image_for_decode = &encoded_image;
if (config_.decode) {
if (config_.NumberOfSpatialLayers() > 1) {
encoded_image_for_decode = MergeAndStoreEncodedImageForSvcDecoding(
encoded_image, codec_type, frame_number, simulcast_svc_idx);
}
frame_stat->decode_start_ns = rtc::TimeNanos();
frame_stat->decode_return_code =
decoders_->at(simulcast_svc_idx)
->Decode(*encoded_image_for_decode, false, nullptr);
} else {
frame_stat->decode_return_code = WEBRTC_VIDEO_CODEC_NO_OUTPUT;
}
if (encoded_frame_writers_) {
RTC_CHECK(encoded_frame_writers_->at(simulcast_svc_idx)
->WriteFrame(*encoded_image_for_decode,
config_.codec_settings.codecType));
}
}
void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
// For the highest measurement accuracy of the decode time, the start/stop
// time recordings should wrap the Decode call as tightly as possible.
const int64_t decode_stop_ns = rtc::TimeNanos();
// Layer metadata.
const size_t simulcast_svc_idx =
frame_wxh_to_simulcast_svc_idx_.at(decoded_frame.size());
FrameStatistics* frame_stat = stats_->GetFrameWithTimestamp(
decoded_frame.timestamp(), simulcast_svc_idx);
const size_t frame_number = frame_stat->frame_number;
// Ensure that the decode order is monotonically increasing, within this
// simulcast/spatial layer.
RTC_CHECK(first_decoded_frame_[simulcast_svc_idx] ||
last_decoded_frame_num_[simulcast_svc_idx] < frame_number);
first_decoded_frame_[simulcast_svc_idx] = false;
last_decoded_frame_num_[simulcast_svc_idx] = frame_number;
// Update frame statistics.
frame_stat->decoding_successful = true;
frame_stat->decode_time_us =
GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns);
frame_stat->decoded_width = decoded_frame.width();
frame_stat->decoded_height = decoded_frame.height();
// Skip quality metrics calculation to not affect CPU usage.
if (!config_.measure_cpu) {
const auto reference_frame = input_frames_.find(frame_number);
RTC_CHECK(reference_frame != input_frames_.cend())
<< "The codecs are either buffering too much, dropping too much, or "
"being too slow relative the input frame rate.";
CalculateFrameQuality(
*reference_frame->second.video_frame_buffer()->ToI420(),
*decoded_frame.video_frame_buffer()->ToI420(), frame_stat);
// Erase all buffered input frames that we have moved past for all
// simulcast/spatial layers. Never buffer more than
// |kMaxBufferedInputFrames| frames, to protect against long runs of
// consecutive frame drops for a particular layer.
const auto min_last_decoded_frame_num = std::min_element(
last_decoded_frame_num_.cbegin(), last_decoded_frame_num_.cend());
const size_t min_buffered_frame_num = std::max(
0, static_cast<int>(frame_number) - kMaxBufferedInputFrames + 1);
RTC_CHECK(min_last_decoded_frame_num != last_decoded_frame_num_.cend());
const auto input_frames_erase_before = input_frames_.lower_bound(
std::max(*min_last_decoded_frame_num, min_buffered_frame_num));
input_frames_.erase(input_frames_.cbegin(), input_frames_erase_before);
}
if (decoded_frame_writers_) {
ExtractI420BufferWithSize(decoded_frame, config_.codec_settings.width,
config_.codec_settings.height, &tmp_i420_buffer_);
RTC_CHECK_EQ(tmp_i420_buffer_.size(),
decoded_frame_writers_->at(simulcast_svc_idx)->FrameLength());
RTC_CHECK(decoded_frame_writers_->at(simulcast_svc_idx)
->WriteFrame(tmp_i420_buffer_.data()));
}
}
const webrtc::EncodedImage*
VideoProcessor::MergeAndStoreEncodedImageForSvcDecoding(
const EncodedImage& encoded_image,
const VideoCodecType codec,
size_t frame_number,
size_t simulcast_svc_idx) {
// Should only be called for SVC.
RTC_CHECK_GT(config_.NumberOfSpatialLayers(), 1);
EncodedImage base_image;
RTC_CHECK_EQ(base_image._length, 0);
// Each SVC layer is decoded with dedicated decoder. Find the nearest
// non-dropped base frame and merge it and current frame into superframe.
if (simulcast_svc_idx > 0) {
for (int base_idx = static_cast<int>(simulcast_svc_idx) - 1; base_idx >= 0;
--base_idx) {
EncodedImage lower_layer = merged_encoded_frames_.at(base_idx);
if (lower_layer._timeStamp == encoded_image._timeStamp) {
base_image = lower_layer;
break;
}
}
}
const size_t payload_size_bytes = base_image._length + encoded_image._length;
const size_t buffer_size_bytes =
payload_size_bytes + EncodedImage::GetBufferPaddingBytes(codec);
uint8_t* copied_buffer = new uint8_t[buffer_size_bytes];
RTC_CHECK(copied_buffer);
if (base_image._length) {
RTC_CHECK(base_image._buffer);
memcpy(copied_buffer, base_image._buffer, base_image._length);
}
memcpy(copied_buffer + base_image._length, encoded_image._buffer,
encoded_image._length);
EncodedImage copied_image = encoded_image;
copied_image = encoded_image;
copied_image._buffer = copied_buffer;
copied_image._length = payload_size_bytes;
copied_image._size = buffer_size_bytes;
// Replace previous EncodedImage for this spatial layer.
uint8_t* old_buffer = merged_encoded_frames_.at(simulcast_svc_idx)._buffer;
if (old_buffer) {
delete[] old_buffer;
}
merged_encoded_frames_.at(simulcast_svc_idx) = copied_image;
return &merged_encoded_frames_.at(simulcast_svc_idx);
}
} // namespace test
} // namespace webrtc