mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-12 21:30:45 +01:00

In order to eliminate the WebRTC Subtree mirror in Chromium, WebRTC is moving the content of the src/webrtc directory up to the src/ directory. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true TBR=tommi@webrtc.org Bug: chromium:611808 Change-Id: Iac59c5b51b950f174119565bac87955a7994bc38 Reviewed-on: https://webrtc-review.googlesource.com/1560 Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org> Reviewed-by: Henrik Kjellander <kjellander@webrtc.org> Cr-Commit-Position: refs/heads/master@{#19845}
407 lines
13 KiB
C++
407 lines
13 KiB
C++
/*
|
|
* Copyright 2015 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#ifndef WEBRTC_API_OPTIONAL_H_
|
|
#define WEBRTC_API_OPTIONAL_H_
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
#ifdef UNIT_TEST
|
|
#include <iomanip>
|
|
#include <ostream>
|
|
#endif // UNIT_TEST
|
|
|
|
#include "webrtc/api/array_view.h"
|
|
#include "webrtc/rtc_base/checks.h"
|
|
#include "webrtc/rtc_base/sanitizer.h"
|
|
|
|
namespace rtc {
|
|
|
|
namespace optional_internal {
|
|
|
|
#if RTC_HAS_ASAN
|
|
|
|
// This is a non-inlined function. The optimizer can't see inside it. It
|
|
// prevents the compiler from generating optimized code that reads value_ even
|
|
// if it is unset. Although safe, this causes memory sanitizers to complain.
|
|
void* FunctionThatDoesNothingImpl(void*);
|
|
|
|
template <typename T>
|
|
inline T* FunctionThatDoesNothing(T* x) {
|
|
return reinterpret_cast<T*>(
|
|
FunctionThatDoesNothingImpl(reinterpret_cast<void*>(x)));
|
|
}
|
|
|
|
#else
|
|
|
|
template <typename T>
|
|
inline T* FunctionThatDoesNothing(T* x) {
|
|
return x;
|
|
}
|
|
|
|
#endif
|
|
|
|
} // namespace optional_internal
|
|
|
|
// Simple std::optional-wannabe. It either contains a T or not.
|
|
//
|
|
// A moved-from Optional<T> may only be destroyed, and assigned to if T allows
|
|
// being assigned to after having been moved from. Specifically, you may not
|
|
// assume that it just doesn't contain a value anymore.
|
|
//
|
|
// Examples of good places to use Optional:
|
|
//
|
|
// - As a class or struct member, when the member doesn't always have a value:
|
|
// struct Prisoner {
|
|
// std::string name;
|
|
// Optional<int> cell_number; // Empty if not currently incarcerated.
|
|
// };
|
|
//
|
|
// - As a return value for functions that may fail to return a value on all
|
|
// allowed inputs. For example, a function that searches an array might
|
|
// return an Optional<size_t> (the index where it found the element, or
|
|
// nothing if it didn't find it); and a function that parses numbers might
|
|
// return Optional<double> (the parsed number, or nothing if parsing failed).
|
|
//
|
|
// Examples of bad places to use Optional:
|
|
//
|
|
// - As a return value for functions that may fail because of disallowed
|
|
// inputs. For example, a string length function should not return
|
|
// Optional<size_t> so that it can return nothing in case the caller passed
|
|
// it a null pointer; the function should probably use RTC_[D]CHECK instead,
|
|
// and return plain size_t.
|
|
//
|
|
// - As a return value for functions that may fail to return a value on all
|
|
// allowed inputs, but need to tell the caller what went wrong. Returning
|
|
// Optional<double> when parsing a single number as in the example above
|
|
// might make sense, but any larger parse job is probably going to need to
|
|
// tell the caller what the problem was, not just that there was one.
|
|
//
|
|
// - As a non-mutable function argument. When you want to pass a value of a
|
|
// type T that can fail to be there, const T* is almost always both fastest
|
|
// and cleanest. (If you're *sure* that the the caller will always already
|
|
// have an Optional<T>, const Optional<T>& is slightly faster than const T*,
|
|
// but this is a micro-optimization. In general, stick to const T*.)
|
|
//
|
|
// TODO(kwiberg): Get rid of this class when the standard library has
|
|
// std::optional (and we're allowed to use it).
|
|
template <typename T>
|
|
class Optional final {
|
|
public:
|
|
// Construct an empty Optional.
|
|
Optional() : has_value_(false), empty_('\0') { PoisonValue(); }
|
|
|
|
// Construct an Optional that contains a value.
|
|
explicit Optional(const T& value) : has_value_(true) {
|
|
new (&value_) T(value);
|
|
}
|
|
explicit Optional(T&& value) : has_value_(true) {
|
|
new (&value_) T(std::move(value));
|
|
}
|
|
|
|
// Copy constructor: copies the value from m if it has one.
|
|
Optional(const Optional& m) : has_value_(m.has_value_) {
|
|
if (has_value_)
|
|
new (&value_) T(m.value_);
|
|
else
|
|
PoisonValue();
|
|
}
|
|
|
|
// Move constructor: if m has a value, moves the value from m, leaving m
|
|
// still in a state where it has a value, but a moved-from one (the
|
|
// properties of which depends on T; the only general guarantee is that we
|
|
// can destroy m).
|
|
Optional(Optional&& m) : has_value_(m.has_value_) {
|
|
if (has_value_)
|
|
new (&value_) T(std::move(m.value_));
|
|
else
|
|
PoisonValue();
|
|
}
|
|
|
|
~Optional() {
|
|
if (has_value_)
|
|
value_.~T();
|
|
else
|
|
UnpoisonValue();
|
|
}
|
|
|
|
// Copy assignment. Uses T's copy assignment if both sides have a value, T's
|
|
// copy constructor if only the right-hand side has a value.
|
|
Optional& operator=(const Optional& m) {
|
|
if (m.has_value_) {
|
|
if (has_value_) {
|
|
value_ = m.value_; // T's copy assignment.
|
|
} else {
|
|
UnpoisonValue();
|
|
new (&value_) T(m.value_); // T's copy constructor.
|
|
has_value_ = true;
|
|
}
|
|
} else {
|
|
reset();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Move assignment. Uses T's move assignment if both sides have a value, T's
|
|
// move constructor if only the right-hand side has a value. The state of m
|
|
// after it's been moved from is as for the move constructor.
|
|
Optional& operator=(Optional&& m) {
|
|
if (m.has_value_) {
|
|
if (has_value_) {
|
|
value_ = std::move(m.value_); // T's move assignment.
|
|
} else {
|
|
UnpoisonValue();
|
|
new (&value_) T(std::move(m.value_)); // T's move constructor.
|
|
has_value_ = true;
|
|
}
|
|
} else {
|
|
reset();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Swap the values if both m1 and m2 have values; move the value if only one
|
|
// of them has one.
|
|
friend void swap(Optional& m1, Optional& m2) {
|
|
if (m1.has_value_) {
|
|
if (m2.has_value_) {
|
|
// Both have values: swap.
|
|
using std::swap;
|
|
swap(m1.value_, m2.value_);
|
|
} else {
|
|
// Only m1 has a value: move it to m2.
|
|
m2.UnpoisonValue();
|
|
new (&m2.value_) T(std::move(m1.value_));
|
|
m1.value_.~T(); // Destroy the moved-from value.
|
|
m1.has_value_ = false;
|
|
m2.has_value_ = true;
|
|
m1.PoisonValue();
|
|
}
|
|
} else if (m2.has_value_) {
|
|
// Only m2 has a value: move it to m1.
|
|
m1.UnpoisonValue();
|
|
new (&m1.value_) T(std::move(m2.value_));
|
|
m2.value_.~T(); // Destroy the moved-from value.
|
|
m1.has_value_ = true;
|
|
m2.has_value_ = false;
|
|
m2.PoisonValue();
|
|
}
|
|
}
|
|
|
|
// Destroy any contained value. Has no effect if we have no value.
|
|
void reset() {
|
|
if (!has_value_)
|
|
return;
|
|
value_.~T();
|
|
has_value_ = false;
|
|
PoisonValue();
|
|
}
|
|
|
|
template <class... Args>
|
|
void emplace(Args&&... args) {
|
|
if (has_value_)
|
|
value_.~T();
|
|
else
|
|
UnpoisonValue();
|
|
new (&value_) T(std::forward<Args>(args)...);
|
|
has_value_ = true;
|
|
}
|
|
|
|
// Conversion to bool to test if we have a value.
|
|
explicit operator bool() const { return has_value_; }
|
|
bool has_value() const { return has_value_; }
|
|
|
|
// Dereferencing. Only allowed if we have a value.
|
|
const T* operator->() const {
|
|
RTC_DCHECK(has_value_);
|
|
return &value_;
|
|
}
|
|
T* operator->() {
|
|
RTC_DCHECK(has_value_);
|
|
return &value_;
|
|
}
|
|
const T& operator*() const {
|
|
RTC_DCHECK(has_value_);
|
|
return value_;
|
|
}
|
|
T& operator*() {
|
|
RTC_DCHECK(has_value_);
|
|
return value_;
|
|
}
|
|
const T& value() const {
|
|
RTC_DCHECK(has_value_);
|
|
return value_;
|
|
}
|
|
T& value() {
|
|
RTC_DCHECK(has_value_);
|
|
return value_;
|
|
}
|
|
|
|
// Dereference with a default value in case we don't have a value.
|
|
const T& value_or(const T& default_val) const {
|
|
// The no-op call prevents the compiler from generating optimized code that
|
|
// reads value_ even if !has_value_, but only if FunctionThatDoesNothing is
|
|
// not completely inlined; see its declaration.).
|
|
return has_value_ ? *optional_internal::FunctionThatDoesNothing(&value_)
|
|
: default_val;
|
|
}
|
|
|
|
// Dereference and move value.
|
|
T MoveValue() {
|
|
RTC_DCHECK(has_value_);
|
|
return std::move(value_);
|
|
}
|
|
|
|
// Equality tests. Two Optionals are equal if they contain equivalent values,
|
|
// or if they're both empty.
|
|
friend bool operator==(const Optional& m1, const Optional& m2) {
|
|
return m1.has_value_ && m2.has_value_ ? m1.value_ == m2.value_
|
|
: m1.has_value_ == m2.has_value_;
|
|
}
|
|
friend bool operator==(const Optional& opt, const T& value) {
|
|
return opt.has_value_ && opt.value_ == value;
|
|
}
|
|
friend bool operator==(const T& value, const Optional& opt) {
|
|
return opt.has_value_ && value == opt.value_;
|
|
}
|
|
|
|
friend bool operator!=(const Optional& m1, const Optional& m2) {
|
|
return m1.has_value_ && m2.has_value_ ? m1.value_ != m2.value_
|
|
: m1.has_value_ != m2.has_value_;
|
|
}
|
|
friend bool operator!=(const Optional& opt, const T& value) {
|
|
return !opt.has_value_ || opt.value_ != value;
|
|
}
|
|
friend bool operator!=(const T& value, const Optional& opt) {
|
|
return !opt.has_value_ || value != opt.value_;
|
|
}
|
|
|
|
private:
|
|
// Tell sanitizers that value_ shouldn't be touched.
|
|
void PoisonValue() {
|
|
rtc::AsanPoison(rtc::MakeArrayView(&value_, 1));
|
|
rtc::MsanMarkUninitialized(rtc::MakeArrayView(&value_, 1));
|
|
}
|
|
|
|
// Tell sanitizers that value_ is OK to touch again.
|
|
void UnpoisonValue() { rtc::AsanUnpoison(rtc::MakeArrayView(&value_, 1)); }
|
|
|
|
bool has_value_; // True iff value_ contains a live value.
|
|
union {
|
|
// empty_ exists only to make it possible to initialize the union, even when
|
|
// it doesn't contain any data. If the union goes uninitialized, it may
|
|
// trigger compiler warnings.
|
|
char empty_;
|
|
// By placing value_ in a union, we get to manage its construction and
|
|
// destruction manually: the Optional constructors won't automatically
|
|
// construct it, and the Optional destructor won't automatically destroy
|
|
// it. Basically, this just allocates a properly sized and aligned block of
|
|
// memory in which we can manually put a T with placement new.
|
|
T value_;
|
|
};
|
|
};
|
|
|
|
#ifdef UNIT_TEST
|
|
namespace optional_internal {
|
|
|
|
// Checks if there's a valid PrintTo(const T&, std::ostream*) call for T.
|
|
template <typename T>
|
|
struct HasPrintTo {
|
|
private:
|
|
struct No {};
|
|
|
|
template <typename T2>
|
|
static auto Test(const T2& obj)
|
|
-> decltype(PrintTo(obj, std::declval<std::ostream*>()));
|
|
|
|
template <typename>
|
|
static No Test(...);
|
|
|
|
public:
|
|
static constexpr bool value =
|
|
!std::is_same<decltype(Test<T>(std::declval<const T&>())), No>::value;
|
|
};
|
|
|
|
// Checks if there's a valid operator<<(std::ostream&, const T&) call for T.
|
|
template <typename T>
|
|
struct HasOstreamOperator {
|
|
private:
|
|
struct No {};
|
|
|
|
template <typename T2>
|
|
static auto Test(const T2& obj)
|
|
-> decltype(std::declval<std::ostream&>() << obj);
|
|
|
|
template <typename>
|
|
static No Test(...);
|
|
|
|
public:
|
|
static constexpr bool value =
|
|
!std::is_same<decltype(Test<T>(std::declval<const T&>())), No>::value;
|
|
};
|
|
|
|
// Prefer using PrintTo to print the object.
|
|
template <typename T>
|
|
typename std::enable_if<HasPrintTo<T>::value, void>::type OptionalPrintToHelper(
|
|
const T& value,
|
|
std::ostream* os) {
|
|
PrintTo(value, os);
|
|
}
|
|
|
|
// Fall back to operator<<(std::ostream&, ...) if it exists.
|
|
template <typename T>
|
|
typename std::enable_if<HasOstreamOperator<T>::value && !HasPrintTo<T>::value,
|
|
void>::type
|
|
OptionalPrintToHelper(const T& value, std::ostream* os) {
|
|
*os << value;
|
|
}
|
|
|
|
inline void OptionalPrintObjectBytes(const unsigned char* bytes,
|
|
size_t size,
|
|
std::ostream* os) {
|
|
*os << "<optional with " << size << "-byte object [";
|
|
for (size_t i = 0; i != size; ++i) {
|
|
*os << (i == 0 ? "" : ((i & 1) ? "-" : " "));
|
|
*os << std::hex << std::setw(2) << std::setfill('0')
|
|
<< static_cast<int>(bytes[i]);
|
|
}
|
|
*os << "]>";
|
|
}
|
|
|
|
// As a final back-up, just print the contents of the objcets byte-wise.
|
|
template <typename T>
|
|
typename std::enable_if<!HasOstreamOperator<T>::value && !HasPrintTo<T>::value,
|
|
void>::type
|
|
OptionalPrintToHelper(const T& value, std::ostream* os) {
|
|
OptionalPrintObjectBytes(reinterpret_cast<const unsigned char*>(&value),
|
|
sizeof(value), os);
|
|
}
|
|
|
|
} // namespace optional_internal
|
|
|
|
// PrintTo is used by gtest to print out the results of tests. We want to ensure
|
|
// the object contained in an Optional can be printed out if it's set, while
|
|
// avoiding touching the object's storage if it is undefined.
|
|
template <typename T>
|
|
void PrintTo(const rtc::Optional<T>& opt, std::ostream* os) {
|
|
if (opt) {
|
|
optional_internal::OptionalPrintToHelper(*opt, os);
|
|
} else {
|
|
*os << "<empty optional>";
|
|
}
|
|
}
|
|
|
|
#endif // UNIT_TEST
|
|
|
|
} // namespace rtc
|
|
|
|
#endif // WEBRTC_API_OPTIONAL_H_
|