mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 22:00:47 +01:00

This was caught in an integration test which had stricter assertions than the FakeTimeout which is used in unit tests, so the first thing was to add the same assertions to the FakeTimeout. The issue is that when a Timer triggers, and if it's set to automatically restart (possibly with an exponential backoff), the `is_running_` field was set to true while the timer callback was called to allow the client to know that the timer is in fact running, but the timer was actually not started until the callback returned. Which made sense, as the callback can with its return value override the duration, which should affect the backoff algorithm. The problem was when a timer was manually started within the callback. As the Timer itself thought that it was already running, it first would Stop() the underlying Timeout, then Start(). But calling Stop() on a timeout that is not running is illegal, which set of assertions. So the solution is to don't lie; Don't say that a timer is running when it's not. Make sure that the timer is running when the timer callback is triggered, which makes it consistent at all times. That may result in unnecessary timeout invocations (stopping and starting), but that's not too expensive. Bug: webrtc:12614 Change-Id: I7b4447ccd88bd43d181e158f0d29b0770c8a3fd6 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/217522 Reviewed-by: Florent Castelli <orphis@webrtc.org> Commit-Queue: Victor Boivie <boivie@webrtc.org> Cr-Commit-Position: refs/heads/master@{#33926}
390 lines
12 KiB
C++
390 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
#include "net/dcsctp/timer/timer.h"
|
|
|
|
#include <memory>
|
|
|
|
#include "absl/types/optional.h"
|
|
#include "net/dcsctp/public/timeout.h"
|
|
#include "net/dcsctp/timer/fake_timeout.h"
|
|
#include "rtc_base/gunit.h"
|
|
#include "test/gmock.h"
|
|
|
|
namespace dcsctp {
|
|
namespace {
|
|
using ::testing::Return;
|
|
|
|
class TimerTest : public testing::Test {
|
|
protected:
|
|
TimerTest()
|
|
: timeout_manager_([this]() { return now_; }),
|
|
manager_([this]() { return timeout_manager_.CreateTimeout(); }) {
|
|
ON_CALL(on_expired_, Call).WillByDefault(Return(absl::nullopt));
|
|
}
|
|
|
|
void AdvanceTimeAndRunTimers(DurationMs duration) {
|
|
now_ = now_ + duration;
|
|
|
|
for (;;) {
|
|
absl::optional<TimeoutID> timeout_id =
|
|
timeout_manager_.GetNextExpiredTimeout();
|
|
if (!timeout_id.has_value()) {
|
|
break;
|
|
}
|
|
manager_.HandleTimeout(*timeout_id);
|
|
}
|
|
}
|
|
|
|
TimeMs now_ = TimeMs(0);
|
|
FakeTimeoutManager timeout_manager_;
|
|
TimerManager manager_;
|
|
testing::MockFunction<absl::optional<DurationMs>()> on_expired_;
|
|
};
|
|
|
|
TEST_F(TimerTest, TimerIsInitiallyStopped) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed));
|
|
|
|
EXPECT_FALSE(t1->is_running());
|
|
}
|
|
|
|
TEST_F(TimerTest, TimerExpiresAtGivenTime) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed));
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
t1->Start();
|
|
EXPECT_TRUE(t1->is_running());
|
|
|
|
AdvanceTimeAndRunTimers(DurationMs(4000));
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
}
|
|
|
|
TEST_F(TimerTest, TimerReschedulesAfterExpiredWithFixedBackoff) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed));
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
t1->Start();
|
|
EXPECT_EQ(t1->expiration_count(), 0);
|
|
|
|
AdvanceTimeAndRunTimers(DurationMs(4000));
|
|
|
|
// Fire first time
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
EXPECT_TRUE(t1->is_running());
|
|
EXPECT_EQ(t1->expiration_count(), 1);
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(4000));
|
|
|
|
// Second time
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
EXPECT_TRUE(t1->is_running());
|
|
EXPECT_EQ(t1->expiration_count(), 2);
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(4000));
|
|
|
|
// Third time
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
EXPECT_TRUE(t1->is_running());
|
|
EXPECT_EQ(t1->expiration_count(), 3);
|
|
}
|
|
|
|
TEST_F(TimerTest, TimerWithNoRestarts) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed,
|
|
/*max_restart=*/0));
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
t1->Start();
|
|
AdvanceTimeAndRunTimers(DurationMs(4000));
|
|
|
|
// Fire first time
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
|
|
EXPECT_FALSE(t1->is_running());
|
|
|
|
// Second time - shouldn't fire
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(5000));
|
|
EXPECT_FALSE(t1->is_running());
|
|
}
|
|
|
|
TEST_F(TimerTest, TimerWithOneRestart) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed,
|
|
/*max_restart=*/1));
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
t1->Start();
|
|
AdvanceTimeAndRunTimers(DurationMs(4000));
|
|
|
|
// Fire first time
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
EXPECT_TRUE(t1->is_running());
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(4000));
|
|
|
|
// Second time - max restart limit reached.
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
EXPECT_FALSE(t1->is_running());
|
|
|
|
// Third time - should not fire.
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(5000));
|
|
EXPECT_FALSE(t1->is_running());
|
|
}
|
|
|
|
TEST_F(TimerTest, TimerWithTwoRestart) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed,
|
|
/*max_restart=*/2));
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
t1->Start();
|
|
AdvanceTimeAndRunTimers(DurationMs(4000));
|
|
|
|
// Fire first time
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
EXPECT_TRUE(t1->is_running());
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(4000));
|
|
|
|
// Second time
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
EXPECT_TRUE(t1->is_running());
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(4000));
|
|
|
|
// Third time
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
EXPECT_FALSE(t1->is_running());
|
|
}
|
|
|
|
TEST_F(TimerTest, TimerWithExponentialBackoff) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kExponential));
|
|
|
|
t1->Start();
|
|
|
|
// Fire first time at 5 seconds
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(5000));
|
|
|
|
// Second time at 5*2^1 = 10 seconds later.
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(9000));
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
|
|
// Third time at 5*2^2 = 20 seconds later.
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(19000));
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
|
|
// Fourth time at 5*2^3 = 40 seconds later.
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(39000));
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
}
|
|
|
|
TEST_F(TimerTest, StartTimerWillStopAndStart) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kExponential));
|
|
|
|
t1->Start();
|
|
|
|
AdvanceTimeAndRunTimers(DurationMs(3000));
|
|
|
|
t1->Start();
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(2000));
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(3000));
|
|
}
|
|
|
|
TEST_F(TimerTest, ExpirationCounterWillResetIfStopped) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kExponential));
|
|
|
|
t1->Start();
|
|
|
|
// Fire first time at 5 seconds
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(5000));
|
|
EXPECT_EQ(t1->expiration_count(), 1);
|
|
|
|
// Second time at 5*2^1 = 10 seconds later.
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(9000));
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
EXPECT_EQ(t1->expiration_count(), 2);
|
|
|
|
t1->Start();
|
|
EXPECT_EQ(t1->expiration_count(), 0);
|
|
|
|
// Third time at 5*2^0 = 5 seconds later.
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(4000));
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
EXPECT_EQ(t1->expiration_count(), 1);
|
|
}
|
|
|
|
TEST_F(TimerTest, StopTimerWillMakeItNotExpire) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kExponential));
|
|
|
|
t1->Start();
|
|
EXPECT_TRUE(t1->is_running());
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(4000));
|
|
t1->Stop();
|
|
EXPECT_FALSE(t1->is_running());
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
}
|
|
|
|
TEST_F(TimerTest, ReturningNewDurationWhenExpired) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(5000), TimerBackoffAlgorithm::kFixed));
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
t1->Start();
|
|
EXPECT_EQ(t1->duration(), DurationMs(5000));
|
|
|
|
AdvanceTimeAndRunTimers(DurationMs(4000));
|
|
|
|
// Fire first time
|
|
EXPECT_CALL(on_expired_, Call).WillOnce(Return(DurationMs(2000)));
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
EXPECT_EQ(t1->duration(), DurationMs(2000));
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
|
|
// Second time
|
|
EXPECT_CALL(on_expired_, Call).WillOnce(Return(DurationMs(10000)));
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
EXPECT_EQ(t1->duration(), DurationMs(10000));
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(9000));
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
}
|
|
|
|
TEST_F(TimerTest, TimersHaveMaximumDuration) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(1000), TimerBackoffAlgorithm::kExponential));
|
|
|
|
t1->set_duration(DurationMs(2 * *Timer::kMaxTimerDuration));
|
|
EXPECT_EQ(t1->duration(), Timer::kMaxTimerDuration);
|
|
}
|
|
|
|
TEST_F(TimerTest, TimersHaveMaximumBackoffDuration) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(1000), TimerBackoffAlgorithm::kExponential));
|
|
|
|
t1->Start();
|
|
|
|
int max_exponent = static_cast<int>(log2(*Timer::kMaxTimerDuration / 1000));
|
|
for (int i = 0; i < max_exponent; ++i) {
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1000 * (1 << i)));
|
|
}
|
|
|
|
// Reached the maximum duration.
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(Timer::kMaxTimerDuration);
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(Timer::kMaxTimerDuration);
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(Timer::kMaxTimerDuration);
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(Timer::kMaxTimerDuration);
|
|
}
|
|
|
|
TEST_F(TimerTest, TimerCanBeStartedFromWithinExpirationHandler) {
|
|
std::unique_ptr<Timer> t1 = manager_.CreateTimer(
|
|
"t1", on_expired_.AsStdFunction(),
|
|
TimerOptions(DurationMs(1000), TimerBackoffAlgorithm::kFixed));
|
|
|
|
t1->Start();
|
|
|
|
// Start a timer, but don't return any new duration in callback.
|
|
EXPECT_CALL(on_expired_, Call).WillOnce([&]() {
|
|
EXPECT_TRUE(t1->is_running());
|
|
t1->set_duration(DurationMs(5000));
|
|
t1->Start();
|
|
return absl::nullopt;
|
|
});
|
|
AdvanceTimeAndRunTimers(DurationMs(1000));
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(4999));
|
|
|
|
// Start a timer, and return any new duration in callback.
|
|
EXPECT_CALL(on_expired_, Call).WillOnce([&]() {
|
|
EXPECT_TRUE(t1->is_running());
|
|
t1->set_duration(DurationMs(5000));
|
|
t1->Start();
|
|
return absl::make_optional(DurationMs(8000));
|
|
});
|
|
AdvanceTimeAndRunTimers(DurationMs(1));
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(0);
|
|
AdvanceTimeAndRunTimers(DurationMs(7999));
|
|
|
|
EXPECT_CALL(on_expired_, Call).Times(1);
|
|
AdvanceTimeAndRunTimers(DurationMs(1));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace dcsctp
|