mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 22:30:40 +01:00

Semi-automatically created with: git grep -l " testing::" | xargs sed -i "s/ testing::/ ::testing::/g" git grep -l "(testing::" | xargs sed -i "s/(testing::/(::testing::/g" git cl format After this, two .cc files failed to compile and I have fixed them manually. Bug: webrtc:10523 Change-Id: I4741d3bcedc831b6c5fdc04485678617eb4ce031 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/132018 Reviewed-by: Karl Wiberg <kwiberg@webrtc.org> Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org> Cr-Commit-Position: refs/heads/master@{#27526}
1348 lines
52 KiB
C++
1348 lines
52 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <list>
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#include "modules/pacing/paced_sender.h"
|
|
#include "system_wrappers/include/clock.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
#include "test/field_trial.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
|
|
using ::testing::_;
|
|
using ::testing::Field;
|
|
using ::testing::Return;
|
|
|
|
namespace {
|
|
constexpr unsigned kFirstClusterBps = 900000;
|
|
constexpr unsigned kSecondClusterBps = 1800000;
|
|
|
|
// The error stems from truncating the time interval of probe packets to integer
|
|
// values. This results in probing slightly higher than the target bitrate.
|
|
// For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets.
|
|
constexpr int kBitrateProbingError = 150000;
|
|
|
|
const float kPaceMultiplier = 2.5f;
|
|
} // namespace
|
|
|
|
namespace webrtc {
|
|
namespace test {
|
|
|
|
static const int kTargetBitrateBps = 800000;
|
|
|
|
class MockPacedSenderCallback : public PacedSender::PacketSender {
|
|
public:
|
|
MOCK_METHOD5(TimeToSendPacket,
|
|
bool(uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
bool retransmission,
|
|
const PacedPacketInfo& pacing_info));
|
|
MOCK_METHOD2(TimeToSendPadding,
|
|
size_t(size_t bytes, const PacedPacketInfo& pacing_info));
|
|
};
|
|
|
|
class PacedSenderPadding : public PacedSender::PacketSender {
|
|
public:
|
|
PacedSenderPadding() : padding_sent_(0) {}
|
|
|
|
bool TimeToSendPacket(uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
bool retransmission,
|
|
const PacedPacketInfo& pacing_info) override {
|
|
return true;
|
|
}
|
|
|
|
size_t TimeToSendPadding(size_t bytes,
|
|
const PacedPacketInfo& pacing_info) override {
|
|
const size_t kPaddingPacketSize = 224;
|
|
size_t num_packets = (bytes + kPaddingPacketSize - 1) / kPaddingPacketSize;
|
|
padding_sent_ += kPaddingPacketSize * num_packets;
|
|
return kPaddingPacketSize * num_packets;
|
|
}
|
|
|
|
size_t padding_sent() { return padding_sent_; }
|
|
|
|
private:
|
|
size_t padding_sent_;
|
|
};
|
|
|
|
class PacedSenderProbing : public PacedSender::PacketSender {
|
|
public:
|
|
PacedSenderProbing() : packets_sent_(0), padding_sent_(0) {}
|
|
|
|
bool TimeToSendPacket(uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
bool retransmission,
|
|
const PacedPacketInfo& pacing_info) override {
|
|
packets_sent_++;
|
|
return true;
|
|
}
|
|
|
|
size_t TimeToSendPadding(size_t bytes,
|
|
const PacedPacketInfo& pacing_info) override {
|
|
padding_sent_ += bytes;
|
|
return padding_sent_;
|
|
}
|
|
|
|
int packets_sent() const { return packets_sent_; }
|
|
|
|
int padding_sent() const { return padding_sent_; }
|
|
|
|
private:
|
|
int packets_sent_;
|
|
int padding_sent_;
|
|
};
|
|
|
|
class PacedSenderTest : public ::testing::TestWithParam<std::string> {
|
|
protected:
|
|
PacedSenderTest() : clock_(123456) {
|
|
srand(0);
|
|
// Need to initialize PacedSender after we initialize clock.
|
|
send_bucket_.reset(new PacedSender(&clock_, &callback_, nullptr));
|
|
send_bucket_->CreateProbeCluster(kFirstClusterBps, /*cluster_id=*/0);
|
|
send_bucket_->CreateProbeCluster(kSecondClusterBps, /*cluster_id=*/1);
|
|
// Default to bitrate probing disabled for testing purposes. Probing tests
|
|
// have to enable probing, either by creating a new PacedSender instance or
|
|
// by calling SetProbingEnabled(true).
|
|
send_bucket_->SetProbingEnabled(false);
|
|
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, 0);
|
|
|
|
clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
|
|
}
|
|
|
|
void SendAndExpectPacket(PacedSender::Priority priority,
|
|
uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
size_t size,
|
|
bool retransmission) {
|
|
send_bucket_->InsertPacket(priority, ssrc, sequence_number, capture_time_ms,
|
|
size, retransmission);
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
|
|
capture_time_ms, retransmission, _))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
}
|
|
SimulatedClock clock_;
|
|
MockPacedSenderCallback callback_;
|
|
std::unique_ptr<PacedSender> send_bucket_;
|
|
};
|
|
|
|
class PacedSenderFieldTrialTest : public ::testing::Test {
|
|
protected:
|
|
struct MediaStream {
|
|
const RtpPacketSender::Priority priority;
|
|
const uint32_t ssrc;
|
|
const size_t packet_size;
|
|
uint16_t seq_num;
|
|
};
|
|
|
|
const int kProcessIntervalsPerSecond = 1000 / 5;
|
|
|
|
PacedSenderFieldTrialTest() : clock_(123456) {}
|
|
void InsertPacket(PacedSender* pacer, MediaStream* stream) {
|
|
pacer->InsertPacket(stream->priority, stream->ssrc, stream->seq_num++,
|
|
clock_.TimeInMilliseconds(), stream->packet_size,
|
|
false);
|
|
}
|
|
void ProcessNext(PacedSender* pacer) {
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer->Process();
|
|
}
|
|
MediaStream audio{/*priority*/ PacedSender::kHighPriority,
|
|
/*ssrc*/ 3333, /*packet_size*/ 100, /*seq_num*/ 1000};
|
|
MediaStream video{/*priority*/ PacedSender::kNormalPriority,
|
|
/*ssrc*/ 4444, /*packet_size*/ 1000, /*seq_num*/ 1000};
|
|
SimulatedClock clock_;
|
|
MockPacedSenderCallback callback_;
|
|
};
|
|
|
|
TEST_F(PacedSenderFieldTrialTest, DefaultNoPaddingInSilence) {
|
|
PacedSender pacer(&clock_, &callback_, nullptr);
|
|
pacer.SetPacingRates(kTargetBitrateBps, 0);
|
|
// Video packet to reset last send time and provide padding data.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).WillOnce(Return(true));
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer.Process();
|
|
EXPECT_CALL(callback_, TimeToSendPadding).Times(0);
|
|
// Waiting 500 ms should not trigger sending of padding.
|
|
clock_.AdvanceTimeMilliseconds(500);
|
|
pacer.Process();
|
|
}
|
|
|
|
TEST_F(PacedSenderFieldTrialTest, PaddingInSilenceWithTrial) {
|
|
ScopedFieldTrials trial("WebRTC-Pacer-PadInSilence/Enabled/");
|
|
PacedSender pacer(&clock_, &callback_, nullptr);
|
|
pacer.SetPacingRates(kTargetBitrateBps, 0);
|
|
// Video packet to reset last send time and provide padding data.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).WillOnce(Return(true));
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer.Process();
|
|
EXPECT_CALL(callback_, TimeToSendPadding).WillOnce(Return(1000));
|
|
// Waiting 500 ms should trigger sending of padding.
|
|
clock_.AdvanceTimeMilliseconds(500);
|
|
pacer.Process();
|
|
}
|
|
|
|
TEST_F(PacedSenderFieldTrialTest, DefaultCongestionWindowAffectsAudio) {
|
|
EXPECT_CALL(callback_, TimeToSendPadding).Times(0);
|
|
PacedSender pacer(&clock_, &callback_, nullptr);
|
|
pacer.SetPacingRates(10000000, 0);
|
|
pacer.SetCongestionWindow(800);
|
|
pacer.UpdateOutstandingData(0);
|
|
// Video packet fills congestion window.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).WillOnce(Return(true));
|
|
ProcessNext(&pacer);
|
|
// Audio packet blocked due to congestion.
|
|
InsertPacket(&pacer, &audio);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).Times(0);
|
|
ProcessNext(&pacer);
|
|
ProcessNext(&pacer);
|
|
// Audio packet unblocked when congestion window clear.
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
pacer.UpdateOutstandingData(0);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).WillOnce(Return(true));
|
|
ProcessNext(&pacer);
|
|
}
|
|
|
|
TEST_F(PacedSenderFieldTrialTest, CongestionWindowDoesNotAffectAudioInTrial) {
|
|
ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Disabled/");
|
|
EXPECT_CALL(callback_, TimeToSendPadding).Times(0);
|
|
PacedSender pacer(&clock_, &callback_, nullptr);
|
|
pacer.SetPacingRates(10000000, 0);
|
|
pacer.SetCongestionWindow(800);
|
|
pacer.UpdateOutstandingData(0);
|
|
// Video packet fills congestion window.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).WillOnce(Return(true));
|
|
ProcessNext(&pacer);
|
|
// Audio not blocked due to congestion.
|
|
InsertPacket(&pacer, &audio);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).WillOnce(Return(true));
|
|
ProcessNext(&pacer);
|
|
}
|
|
|
|
TEST_F(PacedSenderFieldTrialTest, DefaultBudgetAffectsAudio) {
|
|
PacedSender pacer(&clock_, &callback_, nullptr);
|
|
pacer.SetPacingRates(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond,
|
|
0);
|
|
// Video fills budget for following process periods.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).WillOnce(Return(true));
|
|
ProcessNext(&pacer);
|
|
// Audio packet blocked due to budget limit.
|
|
EXPECT_CALL(callback_, TimeToSendPacket).Times(0);
|
|
InsertPacket(&pacer, &audio);
|
|
ProcessNext(&pacer);
|
|
ProcessNext(&pacer);
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
// Audio packet unblocked when the budget has recovered.
|
|
EXPECT_CALL(callback_, TimeToSendPacket).WillOnce(Return(true));
|
|
ProcessNext(&pacer);
|
|
ProcessNext(&pacer);
|
|
}
|
|
|
|
TEST_F(PacedSenderFieldTrialTest, BudgetDoesNotAffectAudioInTrial) {
|
|
ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Disabled/");
|
|
EXPECT_CALL(callback_, TimeToSendPadding).Times(0);
|
|
PacedSender pacer(&clock_, &callback_, nullptr);
|
|
pacer.SetPacingRates(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond,
|
|
0);
|
|
// Video fills budget for following process periods.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).WillOnce(Return(true));
|
|
ProcessNext(&pacer);
|
|
// Audio packet not blocked due to budget limit.
|
|
EXPECT_CALL(callback_, TimeToSendPacket).WillOnce(Return(true));
|
|
InsertPacket(&pacer, &audio);
|
|
ProcessNext(&pacer);
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, FirstSentPacketTimeIsSet) {
|
|
uint16_t sequence_number = 1234;
|
|
const uint32_t kSsrc = 12345;
|
|
const size_t kSizeBytes = 250;
|
|
const size_t kPacketToSend = 3;
|
|
const int64_t kStartMs = clock_.TimeInMilliseconds();
|
|
|
|
// No packet sent.
|
|
EXPECT_EQ(-1, send_bucket_->FirstSentPacketTimeMs());
|
|
|
|
for (size_t i = 0; i < kPacketToSend; ++i) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, kSsrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kSizeBytes, false);
|
|
send_bucket_->Process();
|
|
clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
|
|
}
|
|
EXPECT_EQ(kStartMs, send_bucket_->FirstSentPacketTimeMs());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, QueuePacket) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send =
|
|
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send; ++i) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250, false);
|
|
}
|
|
|
|
int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number, queued_packet_timestamp, 250,
|
|
false);
|
|
EXPECT_EQ(packets_to_send + 1, send_bucket_->QueueSizePackets());
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
|
|
clock_.AdvanceTimeMilliseconds(4);
|
|
EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(1);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number++,
|
|
queued_packet_timestamp, false, _))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
send_bucket_->Process();
|
|
sequence_number++;
|
|
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
|
|
|
// We can send packets_to_send -1 packets of size 250 during the current
|
|
// interval since one packet has already been sent.
|
|
for (size_t i = 0; i < packets_to_send - 1; ++i) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250, false);
|
|
}
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(),
|
|
250, false);
|
|
EXPECT_EQ(packets_to_send, send_bucket_->QueueSizePackets());
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, PaceQueuedPackets) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250, false);
|
|
}
|
|
|
|
for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) {
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(),
|
|
250, false);
|
|
}
|
|
EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10,
|
|
send_bucket_->QueueSizePackets());
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(packets_to_send_per_interval * 10,
|
|
send_bucket_->QueueSizePackets());
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
|
|
for (int k = 0; k < 10; ++k) {
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false, _))
|
|
.Times(packets_to_send_per_interval)
|
|
.WillRepeatedly(Return(true));
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
send_bucket_->Process();
|
|
}
|
|
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
|
send_bucket_->Process();
|
|
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250, false);
|
|
}
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number, clock_.TimeInMilliseconds(), 250,
|
|
false);
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, RepeatedRetransmissionsAllowed) {
|
|
// Send one packet, then two retransmissions of that packet.
|
|
for (size_t i = 0; i < 3; i++) {
|
|
constexpr uint32_t ssrc = 333;
|
|
constexpr uint16_t sequence_number = 444;
|
|
constexpr size_t bytes = 250;
|
|
bool is_retransmission = (i != 0); // Original followed by retransmissions.
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number,
|
|
clock_.TimeInMilliseconds(), bytes, is_retransmission);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
}
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number,
|
|
clock_.TimeInMilliseconds(), 250, false);
|
|
|
|
// Expect packet on second ssrc to be queued and sent as well.
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc + 1, sequence_number,
|
|
clock_.TimeInMilliseconds(), 250, false);
|
|
|
|
clock_.AdvanceTimeMilliseconds(1000);
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, Padding) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier,
|
|
kTargetBitrateBps);
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250, false);
|
|
}
|
|
// No padding is expected since we have sent too much already.
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
|
|
|
// 5 milliseconds later should not send padding since we filled the buffers
|
|
// initially.
|
|
EXPECT_CALL(callback_, TimeToSendPadding(250, _)).Times(0);
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
send_bucket_->Process();
|
|
|
|
// 5 milliseconds later we have enough budget to send some padding.
|
|
EXPECT_CALL(callback_, TimeToSendPadding(250, _))
|
|
.Times(1)
|
|
.WillOnce(Return(250));
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, NoPaddingBeforeNormalPacket) {
|
|
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier,
|
|
kTargetBitrateBps);
|
|
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
|
|
send_bucket_->Process();
|
|
clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
|
|
|
|
send_bucket_->Process();
|
|
clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
|
|
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
capture_time_ms, 250, false);
|
|
EXPECT_CALL(callback_, TimeToSendPadding(250, _))
|
|
.Times(1)
|
|
.WillOnce(Return(250));
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, VerifyPaddingUpToBitrate) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
const int kTimeStep = 5;
|
|
const int64_t kBitrateWindow = 100;
|
|
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier,
|
|
kTargetBitrateBps);
|
|
|
|
int64_t start_time = clock_.TimeInMilliseconds();
|
|
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
capture_time_ms, 250, false);
|
|
EXPECT_CALL(callback_, TimeToSendPadding(250, _))
|
|
.Times(1)
|
|
.WillOnce(Return(250));
|
|
send_bucket_->Process();
|
|
clock_.AdvanceTimeMilliseconds(kTimeStep);
|
|
}
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, VerifyAverageBitrateVaryingMediaPayload) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
const int kTimeStep = 5;
|
|
const int64_t kBitrateWindow = 10000;
|
|
PacedSenderPadding callback;
|
|
send_bucket_.reset(new PacedSender(&clock_, &callback, nullptr));
|
|
send_bucket_->SetProbingEnabled(false);
|
|
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier,
|
|
kTargetBitrateBps);
|
|
|
|
int64_t start_time = clock_.TimeInMilliseconds();
|
|
size_t media_bytes = 0;
|
|
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
|
|
int rand_value = rand(); // NOLINT (rand_r instead of rand)
|
|
size_t media_payload = rand_value % 100 + 200; // [200, 300] bytes.
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, capture_time_ms,
|
|
media_payload, false);
|
|
media_bytes += media_payload;
|
|
clock_.AdvanceTimeMilliseconds(kTimeStep);
|
|
send_bucket_->Process();
|
|
}
|
|
EXPECT_NEAR(kTargetBitrateBps / 1000,
|
|
static_cast<int>(8 * (media_bytes + callback.padding_sent()) /
|
|
kBitrateWindow),
|
|
1);
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, Priority) {
|
|
uint32_t ssrc_low_priority = 12345;
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
int64_t capture_time_ms_low_priority = 1234567;
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250, false);
|
|
}
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
|
|
|
// Expect normal and low priority to be queued and high to pass through.
|
|
send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority,
|
|
sequence_number++, capture_time_ms_low_priority,
|
|
250, false);
|
|
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, capture_time_ms, 250, false);
|
|
}
|
|
send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc,
|
|
sequence_number++, capture_time_ms, 250, false);
|
|
|
|
// Expect all high and normal priority to be sent out first.
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false, _))
|
|
.Times(packets_to_send_per_interval + 1)
|
|
.WillRepeatedly(Return(true));
|
|
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
|
|
|
EXPECT_CALL(callback_,
|
|
TimeToSendPacket(ssrc_low_priority, _,
|
|
capture_time_ms_low_priority, false, _))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, RetransmissionPriority) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 45678;
|
|
int64_t capture_time_ms_retransmission = 56789;
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
|
|
|
// Alternate retransmissions and normal packets.
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++,
|
|
capture_time_ms_retransmission, 250, true);
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, capture_time_ms, 250, false);
|
|
}
|
|
EXPECT_EQ(2 * packets_to_send_per_interval, send_bucket_->QueueSizePackets());
|
|
|
|
// Expect all retransmissions to be sent out first despite having a later
|
|
// capture time.
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
|
|
EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, false, _)).Times(0);
|
|
EXPECT_CALL(callback_, TimeToSendPacket(
|
|
ssrc, _, capture_time_ms_retransmission, true, _))
|
|
.Times(packets_to_send_per_interval)
|
|
.WillRepeatedly(Return(true));
|
|
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(packets_to_send_per_interval, send_bucket_->QueueSizePackets());
|
|
|
|
// Expect the remaining (non-retransmission) packets to be sent.
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
|
|
EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, true, _)).Times(0);
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false, _))
|
|
.Times(packets_to_send_per_interval)
|
|
.WillRepeatedly(Return(true));
|
|
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
send_bucket_->Process();
|
|
|
|
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, HighPrioDoesntAffectBudget) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
|
|
// As high prio packets doesn't affect the budget, we should be able to send
|
|
// a high number of them at once.
|
|
for (int i = 0; i < 25; ++i) {
|
|
SendAndExpectPacket(PacedSender::kHighPriority, ssrc, sequence_number++,
|
|
capture_time_ms, 250, false);
|
|
}
|
|
send_bucket_->Process();
|
|
// Low prio packets does affect the budget.
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(PacedSender::kLowPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250, false);
|
|
}
|
|
send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc, sequence_number,
|
|
capture_time_ms, 250, false);
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number++,
|
|
capture_time_ms, false, _))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, SendsOnlyPaddingWhenCongested) {
|
|
uint32_t ssrc = 202020;
|
|
uint16_t sequence_number = 1000;
|
|
int kPacketSize = 250;
|
|
int kCongestionWindow = kPacketSize * 10;
|
|
|
|
send_bucket_->UpdateOutstandingData(0);
|
|
send_bucket_->SetCongestionWindow(kCongestionWindow);
|
|
int sent_data = 0;
|
|
while (sent_data < kCongestionWindow) {
|
|
sent_data += kPacketSize;
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize, false);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
}
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _, _)).Times(0);
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
|
|
|
|
size_t blocked_packets = 0;
|
|
int64_t expected_time_until_padding = 500;
|
|
while (expected_time_until_padding > 5) {
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(),
|
|
kPacketSize, false);
|
|
blocked_packets++;
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
expected_time_until_padding -= 5;
|
|
}
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
EXPECT_CALL(callback_, TimeToSendPadding(1, _)).Times(1);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(blocked_packets, send_bucket_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, DoesNotAllowOveruseAfterCongestion) {
|
|
uint32_t ssrc = 202020;
|
|
uint16_t seq_num = 1000;
|
|
RtpPacketSender::Priority prio = PacedSender::kNormalPriority;
|
|
int size = 1000;
|
|
auto now_ms = [this] { return clock_.TimeInMilliseconds(); };
|
|
EXPECT_CALL(callback_, TimeToSendPadding).Times(0);
|
|
// The pacing rate is low enough that the budget should not allow two packets
|
|
// to be sent in a row.
|
|
send_bucket_->SetPacingRates(400 * 8 * 1000 / 5, 0);
|
|
// The congestion window is small enough to only let one packet through.
|
|
send_bucket_->SetCongestionWindow(800);
|
|
send_bucket_->UpdateOutstandingData(0);
|
|
// Not yet budget limited or congested, packet is sent.
|
|
send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).WillOnce(Return(true));
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
// Packet blocked due to congestion.
|
|
send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).Times(0);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
// Packet blocked due to congestion.
|
|
send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).Times(0);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
send_bucket_->UpdateOutstandingData(0);
|
|
// Congestion removed and budget has recovered, packet is sent.
|
|
send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).WillOnce(Return(true));
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
send_bucket_->UpdateOutstandingData(0);
|
|
// Should be blocked due to budget limitation as congestion has be removed.
|
|
send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false);
|
|
EXPECT_CALL(callback_, TimeToSendPacket).Times(0);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, ResumesSendingWhenCongestionEnds) {
|
|
uint32_t ssrc = 202020;
|
|
uint16_t sequence_number = 1000;
|
|
int64_t kPacketSize = 250;
|
|
int64_t kCongestionCount = 10;
|
|
int64_t kCongestionWindow = kPacketSize * kCongestionCount;
|
|
int64_t kCongestionTimeMs = 1000;
|
|
|
|
send_bucket_->UpdateOutstandingData(0);
|
|
send_bucket_->SetCongestionWindow(kCongestionWindow);
|
|
int sent_data = 0;
|
|
while (sent_data < kCongestionWindow) {
|
|
sent_data += kPacketSize;
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize, false);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
}
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _, _)).Times(0);
|
|
int unacked_packets = 0;
|
|
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(),
|
|
kPacketSize, false);
|
|
unacked_packets++;
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
}
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
// First mark half of the congested packets as cleared and make sure that just
|
|
// as many are sent
|
|
int ack_count = kCongestionCount / 2;
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false, _))
|
|
.Times(ack_count)
|
|
.WillRepeatedly(Return(true));
|
|
send_bucket_->UpdateOutstandingData(kCongestionWindow -
|
|
kPacketSize * ack_count);
|
|
|
|
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
}
|
|
unacked_packets -= ack_count;
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
// Second make sure all packets are sent if sent packets are continuously
|
|
// marked as acked.
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false, _))
|
|
.Times(unacked_packets)
|
|
.WillRepeatedly(Return(true));
|
|
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
|
|
send_bucket_->UpdateOutstandingData(0);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
}
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, Pause) {
|
|
uint32_t ssrc_low_priority = 12345;
|
|
uint32_t ssrc = 12346;
|
|
uint32_t ssrc_high_priority = 12347;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = clock_.TimeInMilliseconds();
|
|
|
|
EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250, false);
|
|
}
|
|
|
|
send_bucket_->Process();
|
|
|
|
send_bucket_->Pause();
|
|
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority,
|
|
sequence_number++, capture_time_ms, 250, false);
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, capture_time_ms, 250, false);
|
|
send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc_high_priority,
|
|
sequence_number++, capture_time_ms, 250, false);
|
|
}
|
|
clock_.AdvanceTimeMilliseconds(10000);
|
|
int64_t second_capture_time_ms = clock_.TimeInMilliseconds();
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority,
|
|
sequence_number++, second_capture_time_ms, 250,
|
|
false);
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, second_capture_time_ms, 250,
|
|
false);
|
|
send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc_high_priority,
|
|
sequence_number++, second_capture_time_ms, 250,
|
|
false);
|
|
}
|
|
|
|
// Expect everything to be queued.
|
|
EXPECT_EQ(second_capture_time_ms - capture_time_ms,
|
|
send_bucket_->QueueInMs());
|
|
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
EXPECT_CALL(callback_, TimeToSendPadding(1, _)).Times(1);
|
|
send_bucket_->Process();
|
|
|
|
int64_t expected_time_until_send = 500;
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
|
|
while (expected_time_until_send >= 5) {
|
|
send_bucket_->Process();
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
expected_time_until_send -= 5;
|
|
}
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
EXPECT_CALL(callback_, TimeToSendPadding(1, _)).Times(1);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->Process();
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
// Expect high prio packets to come out first followed by normal
|
|
// prio packets and low prio packets (all in capture order).
|
|
{
|
|
::testing::InSequence sequence;
|
|
EXPECT_CALL(callback_,
|
|
TimeToSendPacket(ssrc_high_priority, _, capture_time_ms, _, _))
|
|
.Times(packets_to_send_per_interval)
|
|
.WillRepeatedly(Return(true));
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc_high_priority, _,
|
|
second_capture_time_ms, _, _))
|
|
.Times(packets_to_send_per_interval)
|
|
.WillRepeatedly(Return(true));
|
|
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, _, _))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
}
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
EXPECT_CALL(callback_,
|
|
TimeToSendPacket(ssrc, _, second_capture_time_ms, _, _))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
}
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
EXPECT_CALL(callback_,
|
|
TimeToSendPacket(ssrc_low_priority, _, capture_time_ms, _, _))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
}
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc_low_priority, _,
|
|
second_capture_time_ms, _, _))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
}
|
|
}
|
|
send_bucket_->Resume();
|
|
|
|
// The pacer was resumed directly after the previous process call finished. It
|
|
// will therefore wait 5 ms until next process.
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
|
|
for (size_t i = 0; i < 4; i++) {
|
|
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
}
|
|
|
|
EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, ResendPacket) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = clock_.TimeInMilliseconds();
|
|
EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number, capture_time_ms, 250, false);
|
|
clock_.AdvanceTimeMilliseconds(1);
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number + 1, capture_time_ms + 1, 250,
|
|
false);
|
|
clock_.AdvanceTimeMilliseconds(9999);
|
|
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms,
|
|
send_bucket_->QueueInMs());
|
|
// Fails to send first packet so only one call.
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
|
|
capture_time_ms, false, _))
|
|
.Times(1)
|
|
.WillOnce(Return(false));
|
|
clock_.AdvanceTimeMilliseconds(10000);
|
|
send_bucket_->Process();
|
|
|
|
// Queue remains unchanged.
|
|
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms,
|
|
send_bucket_->QueueInMs());
|
|
|
|
// Fails to send second packet.
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
|
|
capture_time_ms, false, _))
|
|
.Times(1)
|
|
.WillOnce(Return(true));
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1,
|
|
capture_time_ms + 1, false, _))
|
|
.Times(1)
|
|
.WillOnce(Return(false));
|
|
clock_.AdvanceTimeMilliseconds(10000);
|
|
send_bucket_->Process();
|
|
|
|
// Queue is reduced by 1 packet.
|
|
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms - 1,
|
|
send_bucket_->QueueInMs());
|
|
|
|
// Send second packet and queue becomes empty.
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1,
|
|
capture_time_ms + 1, false, _))
|
|
.Times(1)
|
|
.WillOnce(Return(true));
|
|
clock_.AdvanceTimeMilliseconds(10000);
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, ExpectedQueueTimeMs) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kNumPackets = 60;
|
|
const size_t kPacketSize = 1200;
|
|
const int32_t kMaxBitrate = kPaceMultiplier * 30000;
|
|
EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs());
|
|
|
|
send_bucket_->SetPacingRates(30000 * kPaceMultiplier, 0);
|
|
for (size_t i = 0; i < kNumPackets; ++i) {
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize, false);
|
|
}
|
|
|
|
// Queue in ms = 1000 * (bytes in queue) *8 / (bits per second)
|
|
int64_t queue_in_ms =
|
|
static_cast<int64_t>(1000 * kNumPackets * kPacketSize * 8 / kMaxBitrate);
|
|
EXPECT_EQ(queue_in_ms, send_bucket_->ExpectedQueueTimeMs());
|
|
|
|
int64_t time_start = clock_.TimeInMilliseconds();
|
|
while (send_bucket_->QueueSizePackets() > 0) {
|
|
int time_until_process = send_bucket_->TimeUntilNextProcess();
|
|
if (time_until_process <= 0) {
|
|
send_bucket_->Process();
|
|
} else {
|
|
clock_.AdvanceTimeMilliseconds(time_until_process);
|
|
}
|
|
}
|
|
int64_t duration = clock_.TimeInMilliseconds() - time_start;
|
|
|
|
EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs());
|
|
|
|
// Allow for aliasing, duration should be within one pack of max time limit.
|
|
EXPECT_NEAR(duration, PacedSender::kMaxQueueLengthMs,
|
|
static_cast<int64_t>(1000 * kPacketSize * 8 / kMaxBitrate));
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, QueueTimeGrowsOverTime) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
|
|
send_bucket_->SetPacingRates(30000 * kPaceMultiplier, 0);
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number,
|
|
clock_.TimeInMilliseconds(), 1200, false);
|
|
|
|
clock_.AdvanceTimeMilliseconds(500);
|
|
EXPECT_EQ(500, send_bucket_->QueueInMs());
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(0, send_bucket_->QueueInMs());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, ProbingWithInsertedPackets) {
|
|
const size_t kPacketSize = 1200;
|
|
const int kInitialBitrateBps = 300000;
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
PacedSenderProbing packet_sender;
|
|
send_bucket_.reset(new PacedSender(&clock_, &packet_sender, nullptr));
|
|
send_bucket_->CreateProbeCluster(kFirstClusterBps, /*cluster_id=*/0);
|
|
send_bucket_->CreateProbeCluster(kSecondClusterBps, /*cluster_id=*/1);
|
|
send_bucket_->SetPacingRates(kInitialBitrateBps * kPaceMultiplier, 0);
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(),
|
|
kPacketSize, false);
|
|
}
|
|
|
|
int64_t start = clock_.TimeInMilliseconds();
|
|
while (packet_sender.packets_sent() < 5) {
|
|
int time_until_process = send_bucket_->TimeUntilNextProcess();
|
|
clock_.AdvanceTimeMilliseconds(time_until_process);
|
|
send_bucket_->Process();
|
|
}
|
|
int packets_sent = packet_sender.packets_sent();
|
|
// Validate first cluster bitrate. Note that we have to account for number
|
|
// of intervals and hence (packets_sent - 1) on the first cluster.
|
|
EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
|
|
(clock_.TimeInMilliseconds() - start),
|
|
kFirstClusterBps, kBitrateProbingError);
|
|
EXPECT_EQ(0, packet_sender.padding_sent());
|
|
|
|
clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
|
|
start = clock_.TimeInMilliseconds();
|
|
while (packet_sender.packets_sent() < 10) {
|
|
int time_until_process = send_bucket_->TimeUntilNextProcess();
|
|
clock_.AdvanceTimeMilliseconds(time_until_process);
|
|
send_bucket_->Process();
|
|
}
|
|
packets_sent = packet_sender.packets_sent() - packets_sent;
|
|
// Validate second cluster bitrate.
|
|
EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
|
|
(clock_.TimeInMilliseconds() - start),
|
|
kSecondClusterBps, kBitrateProbingError);
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, ProbingWithPaddingSupport) {
|
|
const size_t kPacketSize = 1200;
|
|
const int kInitialBitrateBps = 300000;
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
PacedSenderProbing packet_sender;
|
|
send_bucket_.reset(new PacedSender(&clock_, &packet_sender, nullptr));
|
|
send_bucket_->CreateProbeCluster(kFirstClusterBps, /*cluster_id=*/0);
|
|
send_bucket_->SetPacingRates(kInitialBitrateBps * kPaceMultiplier, 0);
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(),
|
|
kPacketSize, false);
|
|
}
|
|
|
|
int64_t start = clock_.TimeInMilliseconds();
|
|
int process_count = 0;
|
|
while (process_count < 5) {
|
|
int time_until_process = send_bucket_->TimeUntilNextProcess();
|
|
clock_.AdvanceTimeMilliseconds(time_until_process);
|
|
send_bucket_->Process();
|
|
++process_count;
|
|
}
|
|
int packets_sent = packet_sender.packets_sent();
|
|
int padding_sent = packet_sender.padding_sent();
|
|
EXPECT_GT(packets_sent, 0);
|
|
EXPECT_GT(padding_sent, 0);
|
|
// Note that the number of intervals here for kPacketSize is
|
|
// packets_sent due to padding in the same cluster.
|
|
EXPECT_NEAR((packets_sent * kPacketSize * 8000 + padding_sent) /
|
|
(clock_.TimeInMilliseconds() - start),
|
|
kFirstClusterBps, kBitrateProbingError);
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, PaddingOveruse) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kPacketSize = 1200;
|
|
|
|
send_bucket_->Process();
|
|
send_bucket_->SetPacingRates(60000 * kPaceMultiplier, 0);
|
|
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize, false);
|
|
send_bucket_->Process();
|
|
|
|
// Add 30kbit padding. When increasing budget, media budget will increase from
|
|
// negative (overuse) while padding budget will increase from 0.
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
send_bucket_->SetPacingRates(60000 * kPaceMultiplier, 30000);
|
|
|
|
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize, false);
|
|
EXPECT_LT(5u, send_bucket_->ExpectedQueueTimeMs());
|
|
// Don't send padding if queue is non-empty, even if padding budget > 0.
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
// TODO(philipel): Move to PacketQueue2 unittests.
|
|
#if 0
|
|
TEST_F(PacedSenderTest, AverageQueueTime) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kPacketSize = 1200;
|
|
const int kBitrateBps = 10 * kPacketSize * 8; // 10 packets per second.
|
|
|
|
send_bucket_->SetPacingRates(kBitrateBps * kPaceMultiplier, 0);
|
|
|
|
EXPECT_EQ(0, send_bucket_->AverageQueueTimeMs());
|
|
|
|
int64_t first_capture_time = clock_.TimeInMilliseconds();
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number, first_capture_time, kPacketSize,
|
|
false);
|
|
clock_.AdvanceTimeMilliseconds(10);
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number + 1, clock_.TimeInMilliseconds(),
|
|
kPacketSize, false);
|
|
clock_.AdvanceTimeMilliseconds(10);
|
|
|
|
EXPECT_EQ((20 + 10) / 2, send_bucket_->AverageQueueTimeMs());
|
|
|
|
// Only first packet (queued for 20ms) should be removed, leave the second
|
|
// packet (queued for 10ms) alone in the queue.
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
|
|
first_capture_time, false, _))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
send_bucket_->Process();
|
|
|
|
EXPECT_EQ(10, send_bucket_->AverageQueueTimeMs());
|
|
|
|
clock_.AdvanceTimeMilliseconds(10);
|
|
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1,
|
|
first_capture_time + 10, false, _))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(true));
|
|
for (int i = 0; i < 3; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(30); // Max delta.
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
EXPECT_EQ(0, send_bucket_->AverageQueueTimeMs());
|
|
}
|
|
#endif
|
|
|
|
TEST_F(PacedSenderTest, ProbeClusterId) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kPacketSize = 1200;
|
|
|
|
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier,
|
|
kTargetBitrateBps);
|
|
send_bucket_->SetProbingEnabled(true);
|
|
for (int i = 0; i < 10; ++i) {
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number + i, clock_.TimeInMilliseconds(),
|
|
kPacketSize, false);
|
|
}
|
|
|
|
// First probing cluster.
|
|
EXPECT_CALL(callback_,
|
|
TimeToSendPacket(_, _, _, _,
|
|
Field(&PacedPacketInfo::probe_cluster_id, 0)))
|
|
.Times(5)
|
|
.WillRepeatedly(Return(true));
|
|
for (int i = 0; i < 5; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(20);
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
// Second probing cluster.
|
|
EXPECT_CALL(callback_,
|
|
TimeToSendPacket(_, _, _, _,
|
|
Field(&PacedPacketInfo::probe_cluster_id, 1)))
|
|
.Times(5)
|
|
.WillRepeatedly(Return(true));
|
|
for (int i = 0; i < 5; ++i) {
|
|
clock_.AdvanceTimeMilliseconds(20);
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
// Needed for the Field comparer below.
|
|
const int kNotAProbe = PacedPacketInfo::kNotAProbe;
|
|
// No more probing packets.
|
|
EXPECT_CALL(callback_,
|
|
TimeToSendPadding(
|
|
_, Field(&PacedPacketInfo::probe_cluster_id, kNotAProbe)))
|
|
.Times(1)
|
|
.WillRepeatedly(Return(500));
|
|
send_bucket_->Process();
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, AvoidBusyLoopOnSendFailure) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kPacketSize = kFirstClusterBps / (8000 / 10);
|
|
|
|
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier,
|
|
kTargetBitrateBps);
|
|
send_bucket_->SetProbingEnabled(true);
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
|
|
sequence_number, clock_.TimeInMilliseconds(),
|
|
kPacketSize, false);
|
|
|
|
EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _, _))
|
|
.WillOnce(Return(true));
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(10, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(9);
|
|
|
|
EXPECT_CALL(callback_, TimeToSendPadding(_, _))
|
|
.Times(2)
|
|
.WillRepeatedly(Return(0));
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess());
|
|
clock_.AdvanceTimeMilliseconds(1);
|
|
send_bucket_->Process();
|
|
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
|
|
}
|
|
|
|
// TODO(philipel): Move to PacketQueue2 unittests.
|
|
#if 0
|
|
TEST_F(PacedSenderTest, QueueTimeWithPause) {
|
|
const size_t kPacketSize = 1200;
|
|
const uint32_t kSsrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(),
|
|
kPacketSize, false);
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(),
|
|
kPacketSize, false);
|
|
|
|
clock_.AdvanceTimeMilliseconds(100);
|
|
EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());
|
|
|
|
send_bucket_->Pause();
|
|
EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());
|
|
|
|
// In paused state, queue time should not increase.
|
|
clock_.AdvanceTimeMilliseconds(100);
|
|
EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());
|
|
|
|
send_bucket_->Resume();
|
|
EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());
|
|
|
|
clock_.AdvanceTimeMilliseconds(100);
|
|
EXPECT_EQ(200, send_bucket_->AverageQueueTimeMs());
|
|
}
|
|
|
|
TEST_F(PacedSenderTest, QueueTimePausedDuringPush) {
|
|
const size_t kPacketSize = 1200;
|
|
const uint32_t kSsrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(),
|
|
kPacketSize, false);
|
|
clock_.AdvanceTimeMilliseconds(100);
|
|
send_bucket_->Pause();
|
|
clock_.AdvanceTimeMilliseconds(100);
|
|
EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());
|
|
|
|
// Add a new packet during paused phase.
|
|
send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc,
|
|
sequence_number++, clock_.TimeInMilliseconds(),
|
|
kPacketSize, false);
|
|
// From a queue time perspective, packet inserted during pause will have zero
|
|
// queue time. Average queue time will then be (0 + 100) / 2 = 50.
|
|
EXPECT_EQ(50, send_bucket_->AverageQueueTimeMs());
|
|
|
|
clock_.AdvanceTimeMilliseconds(100);
|
|
EXPECT_EQ(50, send_bucket_->AverageQueueTimeMs());
|
|
|
|
send_bucket_->Resume();
|
|
EXPECT_EQ(50, send_bucket_->AverageQueueTimeMs());
|
|
|
|
clock_.AdvanceTimeMilliseconds(100);
|
|
EXPECT_EQ(150, send_bucket_->AverageQueueTimeMs());
|
|
}
|
|
#endif
|
|
|
|
// TODO(sprang): Extract PacketQueue from PacedSender so that we can test
|
|
// removing elements while paused. (This is possible, but only because of semi-
|
|
// racy condition so can't easily be tested).
|
|
|
|
} // namespace test
|
|
} // namespace webrtc
|