webrtc/call/simulated_network.cc
Sebastian Jansson 2b08e3188e Adds CoDel implementation to network simulation.
Adds an implementation of the CoDel active queue management algorithm
to the network simulation. It is loosely based on CoDel pseudocode
from ACMQueue: https://queue.acm.org/appendices/codel.html

Bug: webrtc:9510
Change-Id: Ice485be35a01dafa6169d697b51b5c1b33a49ba6
Reviewed-on: https://webrtc-review.googlesource.com/c/123581
Commit-Queue: Sebastian Jansson <srte@webrtc.org>
Reviewed-by: Per Kjellander <perkj@webrtc.org>
Reviewed-by: Christoffer Rodbro <crodbro@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#26834}
2019-02-25 09:54:03 +00:00

285 lines
10 KiB
C++

/*
* Copyright 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "call/simulated_network.h"
#include <algorithm>
#include <cmath>
#include <utility>
#include "api/units/data_rate.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr TimeDelta kDefaultProcessDelay = TimeDelta::Millis<5>();
} // namespace
CoDelSimulation::CoDelSimulation() = default;
CoDelSimulation::~CoDelSimulation() = default;
bool CoDelSimulation::DropDequeuedPacket(Timestamp now,
Timestamp enqueing_time,
DataSize packet_size,
DataSize queue_size) {
constexpr TimeDelta kWindow = TimeDelta::Millis<100>();
constexpr TimeDelta kDelayThreshold = TimeDelta::Millis<5>();
constexpr TimeDelta kDropCountMemory = TimeDelta::Millis<1600>();
constexpr DataSize kMaxPacketSize = DataSize::Bytes<1500>();
// Compensates for process interval in simulation; not part of standard CoDel.
TimeDelta queuing_time = now - enqueing_time - kDefaultProcessDelay;
if (queue_size < kMaxPacketSize || queuing_time < kDelayThreshold) {
enter_drop_state_at_ = Timestamp::PlusInfinity();
state_ = kNormal;
return false;
}
switch (state_) {
case kNormal:
enter_drop_state_at_ = now + kWindow;
state_ = kPending;
return false;
case kPending:
if (now >= enter_drop_state_at_) {
state_ = kDropping;
// Starting the drop counter with the drops made during the most recent
// drop state period.
drop_count_ = drop_count_ - previous_drop_count_;
if (now >= last_drop_at_ + kDropCountMemory)
drop_count_ = 0;
previous_drop_count_ = drop_count_;
last_drop_at_ = now;
++drop_count_;
return true;
}
return false;
case kDropping:
TimeDelta drop_delay = kWindow / sqrt(static_cast<double>(drop_count_));
Timestamp next_drop_at = last_drop_at_ + drop_delay;
if (now >= next_drop_at) {
if (queue_size - packet_size < kMaxPacketSize)
state_ = kPending;
last_drop_at_ = next_drop_at;
++drop_count_;
return true;
}
return false;
}
}
SimulatedNetwork::SimulatedNetwork(SimulatedNetwork::Config config,
uint64_t random_seed)
: random_(random_seed), bursting_(false) {
SetConfig(config);
}
SimulatedNetwork::~SimulatedNetwork() = default;
void SimulatedNetwork::SetConfig(const SimulatedNetwork::Config& config) {
rtc::CritScope crit(&config_lock_);
config_state_.config = config; // Shallow copy of the struct.
double prob_loss = config.loss_percent / 100.0;
if (config_state_.config.avg_burst_loss_length == -1) {
// Uniform loss
config_state_.prob_loss_bursting = prob_loss;
config_state_.prob_start_bursting = prob_loss;
} else {
// Lose packets according to a gilbert-elliot model.
int avg_burst_loss_length = config.avg_burst_loss_length;
int min_avg_burst_loss_length = std::ceil(prob_loss / (1 - prob_loss));
RTC_CHECK_GT(avg_burst_loss_length, min_avg_burst_loss_length)
<< "For a total packet loss of " << config.loss_percent << "%% then"
<< " avg_burst_loss_length must be " << min_avg_burst_loss_length + 1
<< " or higher.";
config_state_.prob_loss_bursting = (1.0 - 1.0 / avg_burst_loss_length);
config_state_.prob_start_bursting =
prob_loss / (1 - prob_loss) / avg_burst_loss_length;
}
}
void SimulatedNetwork::PauseTransmissionUntil(int64_t until_us) {
rtc::CritScope crit(&config_lock_);
config_state_.pause_transmission_until_us = until_us;
}
bool SimulatedNetwork::EnqueuePacket(PacketInFlightInfo packet) {
RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
ConfigState state = GetConfigState();
UpdateCapacityQueue(state, packet.send_time_us);
packet.size += state.config.packet_overhead;
if (state.config.queue_length_packets > 0 &&
capacity_link_.size() >= state.config.queue_length_packets) {
// Too many packet on the link, drop this one.
return false;
}
// Set arrival time = send time for now; actual arrival time will be
// calculated in UpdateCapacityQueue.
queue_size_bytes_ += packet.size;
capacity_link_.push({packet, packet.send_time_us});
if (!next_process_time_us_) {
next_process_time_us_ = packet.send_time_us + kDefaultProcessDelay.us();
}
return true;
}
absl::optional<int64_t> SimulatedNetwork::NextDeliveryTimeUs() const {
RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
return next_process_time_us_;
}
void SimulatedNetwork::UpdateCapacityQueue(ConfigState state,
int64_t time_now_us) {
bool needs_sort = false;
// Catch for thread races.
if (time_now_us < last_capacity_link_visit_us_.value_or(time_now_us))
return;
int64_t time_us = last_capacity_link_visit_us_.value_or(time_now_us);
// Check the capacity link first.
while (!capacity_link_.empty()) {
int64_t time_until_front_exits_us = 0;
if (state.config.link_capacity_kbps > 0) {
int64_t remaining_bits =
capacity_link_.front().packet.size * 8 - pending_drain_bits_;
RTC_DCHECK(remaining_bits > 0);
// Division rounded up - packet not delivered until its last bit is.
time_until_front_exits_us =
(1000 * remaining_bits + state.config.link_capacity_kbps - 1) /
state.config.link_capacity_kbps;
}
if (time_us + time_until_front_exits_us > time_now_us) {
// Packet at front will not exit yet. Will not enter here on infinite
// capacity(=0) so no special handling needed.
pending_drain_bits_ +=
((time_now_us - time_us) * state.config.link_capacity_kbps) / 1000;
break;
}
if (state.config.link_capacity_kbps > 0) {
pending_drain_bits_ +=
(time_until_front_exits_us * state.config.link_capacity_kbps) / 1000;
} else {
// Enough to drain the whole queue.
pending_drain_bits_ = queue_size_bytes_ * 8;
}
// Time to get this packet.
PacketInfo packet = capacity_link_.front();
capacity_link_.pop();
time_us += time_until_front_exits_us;
if (state.config.codel_active_queue_management) {
while (!capacity_link_.empty() &&
codel_controller_.DropDequeuedPacket(
Timestamp::us(time_us),
Timestamp::us(capacity_link_.front().packet.send_time_us),
DataSize::bytes(capacity_link_.front().packet.size),
DataSize::bytes(queue_size_bytes_))) {
PacketInfo dropped = capacity_link_.front();
capacity_link_.pop();
queue_size_bytes_ -= dropped.packet.size;
dropped.arrival_time_us = PacketDeliveryInfo::kNotReceived;
delay_link_.emplace_back(dropped);
}
}
RTC_DCHECK(time_us >= packet.packet.send_time_us);
packet.arrival_time_us =
std::max(state.pause_transmission_until_us, time_us);
queue_size_bytes_ -= packet.packet.size;
pending_drain_bits_ -= packet.packet.size * 8;
RTC_DCHECK(pending_drain_bits_ >= 0);
// Drop packets at an average rate of |state.config.loss_percent| with
// and average loss burst length of |state.config.avg_burst_loss_length|.
if ((bursting_ && random_.Rand<double>() < state.prob_loss_bursting) ||
(!bursting_ && random_.Rand<double>() < state.prob_start_bursting)) {
bursting_ = true;
packet.arrival_time_us = PacketDeliveryInfo::kNotReceived;
} else {
bursting_ = false;
int64_t arrival_time_jitter_us = std::max(
random_.Gaussian(state.config.queue_delay_ms * 1000,
state.config.delay_standard_deviation_ms * 1000),
0.0);
// If reordering is not allowed then adjust arrival_time_jitter
// to make sure all packets are sent in order.
int64_t last_arrival_time_us =
delay_link_.empty() ? -1 : delay_link_.back().arrival_time_us;
if (!state.config.allow_reordering && !delay_link_.empty() &&
packet.arrival_time_us + arrival_time_jitter_us <
last_arrival_time_us) {
arrival_time_jitter_us = last_arrival_time_us - packet.arrival_time_us;
}
packet.arrival_time_us += arrival_time_jitter_us;
if (packet.arrival_time_us >= last_arrival_time_us) {
last_arrival_time_us = packet.arrival_time_us;
} else {
needs_sort = true;
}
}
delay_link_.emplace_back(packet);
}
last_capacity_link_visit_us_ = time_now_us;
// Cannot save unused capacity for later.
pending_drain_bits_ = std::min(pending_drain_bits_, queue_size_bytes_ * 8);
if (needs_sort) {
// Packet(s) arrived out of order, make sure list is sorted.
std::sort(delay_link_.begin(), delay_link_.end(),
[](const PacketInfo& p1, const PacketInfo& p2) {
return p1.arrival_time_us < p2.arrival_time_us;
});
}
}
SimulatedNetwork::ConfigState SimulatedNetwork::GetConfigState() const {
rtc::CritScope crit(&config_lock_);
return config_state_;
}
std::vector<PacketDeliveryInfo> SimulatedNetwork::DequeueDeliverablePackets(
int64_t receive_time_us) {
RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
UpdateCapacityQueue(GetConfigState(), receive_time_us);
std::vector<PacketDeliveryInfo> packets_to_deliver;
// Check the extra delay queue.
while (!delay_link_.empty() &&
receive_time_us >= delay_link_.front().arrival_time_us) {
PacketInfo packet_info = delay_link_.front();
packets_to_deliver.emplace_back(
PacketDeliveryInfo(packet_info.packet, packet_info.arrival_time_us));
delay_link_.pop_front();
}
if (!delay_link_.empty()) {
next_process_time_us_ = delay_link_.front().arrival_time_us;
} else if (!capacity_link_.empty()) {
next_process_time_us_ = receive_time_us + kDefaultProcessDelay.us();
} else {
next_process_time_us_.reset();
}
return packets_to_deliver;
}
} // namespace webrtc