webrtc/call/simulated_network_unittest.cc
Sebastian Jansson 2b08e3188e Adds CoDel implementation to network simulation.
Adds an implementation of the CoDel active queue management algorithm
to the network simulation. It is loosely based on CoDel pseudocode
from ACMQueue: https://queue.acm.org/appendices/codel.html

Bug: webrtc:9510
Change-Id: Ice485be35a01dafa6169d697b51b5c1b33a49ba6
Reviewed-on: https://webrtc-review.googlesource.com/c/123581
Commit-Queue: Sebastian Jansson <srte@webrtc.org>
Reviewed-by: Per Kjellander <perkj@webrtc.org>
Reviewed-by: Christoffer Rodbro <crodbro@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#26834}
2019-02-25 09:54:03 +00:00

147 lines
5.3 KiB
C++

/*
* Copyright 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <map>
#include <set>
#include <vector>
#include <algorithm>
#include "absl/algorithm/container.h"
#include "api/units/data_rate.h"
#include "call/simulated_network.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr int kNotReceived = PacketDeliveryInfo::kNotReceived;
}
TEST(SimulatedNetworkTest, CodelDoesNothingAtCapacity) {
const TimeDelta kRuntime = TimeDelta::seconds(30);
DataRate link_capacity = DataRate::kbps(1000);
const DataSize packet_size = DataSize::bytes(1000);
SimulatedNetwork::Config config;
config.codel_active_queue_management = true;
config.queue_delay_ms = 10;
config.link_capacity_kbps = link_capacity.kbps();
SimulatedNetwork network(config);
// Need to round up here as otherwise we actually will choke.
const TimeDelta packet_inverval =
packet_size / link_capacity + TimeDelta::ms(1);
// Send at capacity and see we get no loss.
Timestamp start_time = Timestamp::ms(0);
Timestamp current_time = start_time;
Timestamp next_packet_time = start_time;
uint64_t next_id = 0;
std::set<uint64_t> pending;
while (current_time - start_time < kRuntime) {
if (current_time >= next_packet_time) {
bool success = network.EnqueuePacket(PacketInFlightInfo{
packet_size.bytes<size_t>(), current_time.us(), next_id});
EXPECT_TRUE(success);
pending.insert(next_id);
++next_id;
next_packet_time += packet_inverval;
}
Timestamp next_delivery = Timestamp::PlusInfinity();
if (network.NextDeliveryTimeUs())
next_delivery = Timestamp::us(*network.NextDeliveryTimeUs());
current_time = std::min(next_packet_time, next_delivery);
if (current_time >= next_delivery) {
for (PacketDeliveryInfo packet :
network.DequeueDeliverablePackets(current_time.us())) {
EXPECT_NE(packet.receive_time_us, kNotReceived);
pending.erase(packet.packet_id);
}
}
}
while (network.NextDeliveryTimeUs()) {
for (PacketDeliveryInfo packet :
network.DequeueDeliverablePackets(*network.NextDeliveryTimeUs())) {
EXPECT_NE(packet.receive_time_us, kNotReceived);
pending.erase(packet.packet_id);
}
}
EXPECT_EQ(pending.size(), 0u);
}
TEST(SimulatedNetworkTest, CodelLimitsDelayAndDropsPacketsOnOverload) {
const TimeDelta kRuntime = TimeDelta::seconds(30);
const TimeDelta kCheckInterval = TimeDelta::ms(2000);
DataRate link_capacity = DataRate::kbps(1000);
const DataSize rough_packet_size = DataSize::bytes(1500);
const double overload_rate = 1.5;
SimulatedNetwork::Config config;
config.codel_active_queue_management = true;
config.queue_delay_ms = 10;
config.link_capacity_kbps = link_capacity.kbps();
SimulatedNetwork network(config);
const TimeDelta packet_inverval = rough_packet_size / link_capacity;
const DataSize packet_size = overload_rate * link_capacity * packet_inverval;
// Send above capacity and see delays are still controlled at the cost of
// packet loss.
Timestamp start_time = Timestamp::ms(0);
Timestamp current_time = start_time;
Timestamp next_packet_time = start_time;
Timestamp last_check = start_time;
uint64_t next_id = 1;
std::map<uint64_t, int64_t> send_times_us;
int lost = 0;
std::vector<int64_t> delays_us;
while (current_time - start_time < kRuntime) {
if (current_time >= next_packet_time) {
bool success = network.EnqueuePacket(PacketInFlightInfo{
packet_size.bytes<size_t>(), current_time.us(), next_id});
send_times_us.insert({next_id, current_time.us()});
++next_id;
EXPECT_TRUE(success);
next_packet_time += packet_inverval;
}
Timestamp next_delivery = Timestamp::PlusInfinity();
if (network.NextDeliveryTimeUs())
next_delivery = Timestamp::us(*network.NextDeliveryTimeUs());
current_time = std::min(next_packet_time, next_delivery);
if (current_time >= next_delivery) {
for (PacketDeliveryInfo packet :
network.DequeueDeliverablePackets(current_time.us())) {
if (packet.receive_time_us == kNotReceived) {
++lost;
} else {
delays_us.push_back(packet.receive_time_us -
send_times_us[packet.packet_id]);
}
send_times_us.erase(packet.packet_id);
}
}
if (current_time > last_check + kCheckInterval) {
last_check = current_time;
TimeDelta average_delay =
TimeDelta::us(absl::c_accumulate(delays_us, 0)) / delays_us.size();
double loss_ratio = static_cast<double>(lost) / (lost + delays_us.size());
EXPECT_LT(average_delay.ms(), 200)
<< "Time " << (current_time - start_time).ms() << "\n";
EXPECT_GT(loss_ratio, 0.5 * (overload_rate - 1));
}
}
while (network.NextDeliveryTimeUs()) {
for (PacketDeliveryInfo packet :
network.DequeueDeliverablePackets(*network.NextDeliveryTimeUs())) {
send_times_us.erase(packet.packet_id);
}
}
EXPECT_EQ(send_times_us.size(), 0u);
}
} // namespace webrtc