webrtc/video/video_stream_buffer_controller_unittest.cc
Markus Handell be400e465b Metronome: disable & refactor for single-threaded operation.
The Chromium implementation unfortunately has a rare deadlock.
Rather than patching that up, we're changing the metronome
implementation to be able to use a single-threaded environment
instead.

The metronome functionality is disabled in VideoReceiveStream2
construction inside call.cc.

The new design does not have listener registration or
deresigstration and instead accepts and invokes callbacks, on
the same sequence that requested the callback. This allows
the clients to use features such as WeakPtrFactories or
ScopedThreadSafety for cancellation.

The CL will be followed up with cleanup CLs that removes
registration APIs once downstream consumers have adapted.

Bug: chromium:1381982
Change-Id: I43732d1971e2276c39b431a04365cd2fc3c55c25
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/282280
Reviewed-by: Per Kjellander <perkj@webrtc.org>
Reviewed-by: Erik Språng <sprang@webrtc.org>
Reviewed-by: Evan Shrubsole <eshr@webrtc.org>
Commit-Queue: Markus Handell <handellm@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#38582}
2022-11-08 12:23:40 +00:00

922 lines
36 KiB
C++

/*
* Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/video_stream_buffer_controller.h"
#include <stdint.h>
#include <limits>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "absl/types/optional.h"
#include "absl/types/variant.h"
#include "api/metronome/test/fake_metronome.h"
#include "api/units/frequency.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "api/video/video_content_type.h"
#include "api/video/video_timing.h"
#include "rtc_base/checks.h"
#include "test/fake_encoded_frame.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/scoped_key_value_config.h"
#include "test/time_controller/simulated_time_controller.h"
#include "video/decode_synchronizer.h"
#include "video/task_queue_frame_decode_scheduler.h"
using ::testing::_;
using ::testing::AllOf;
using ::testing::Contains;
using ::testing::Each;
using ::testing::Eq;
using ::testing::IsEmpty;
using ::testing::Matches;
using ::testing::Ne;
using ::testing::Not;
using ::testing::Optional;
using ::testing::Pointee;
using ::testing::SizeIs;
using ::testing::VariantWith;
namespace webrtc {
namespace {
constexpr size_t kFrameSize = 10;
constexpr uint32_t kFps30Rtp = 90000 / 30;
constexpr TimeDelta kFps30Delay = 1 / Frequency::Hertz(30);
const VideoPlayoutDelay kZeroPlayoutDelay = {0, 0};
constexpr Timestamp kClockStart = Timestamp::Millis(1000);
auto TimedOut() {
return Optional(VariantWith<TimeDelta>(_));
}
auto Frame(testing::Matcher<EncodedFrame> m) {
return Optional(VariantWith<std::unique_ptr<EncodedFrame>>(Pointee(m)));
}
std::unique_ptr<test::FakeEncodedFrame> WithReceiveTimeFromRtpTimestamp(
std::unique_ptr<test::FakeEncodedFrame> frame) {
if (frame->Timestamp() == 0) {
frame->SetReceivedTime(kClockStart.ms());
} else {
frame->SetReceivedTime(
TimeDelta::Seconds(frame->Timestamp() / 90000.0).ms() +
kClockStart.ms());
}
return frame;
}
class VCMTimingTest : public VCMTiming {
public:
using VCMTiming::VCMTiming;
void IncomingTimestamp(uint32_t rtp_timestamp,
Timestamp last_packet_time) override {
IncomingTimestampMocked(rtp_timestamp, last_packet_time);
VCMTiming::IncomingTimestamp(rtp_timestamp, last_packet_time);
}
MOCK_METHOD(void,
IncomingTimestampMocked,
(uint32_t rtp_timestamp, Timestamp last_packet_time),
());
};
class VCMReceiveStatisticsCallbackMock : public VCMReceiveStatisticsCallback {
public:
MOCK_METHOD(void,
OnCompleteFrame,
(bool is_keyframe,
size_t size_bytes,
VideoContentType content_type),
(override));
MOCK_METHOD(void, OnDroppedFrames, (uint32_t num_dropped), (override));
MOCK_METHOD(void,
OnFrameBufferTimingsUpdated,
(int max_decode_ms,
int current_delay_ms,
int target_delay_ms,
int jitter_buffer_ms,
int min_playout_delay_ms,
int render_delay_ms),
(override));
MOCK_METHOD(void,
OnTimingFrameInfoUpdated,
(const TimingFrameInfo& info),
(override));
};
} // namespace
constexpr auto kMaxWaitForKeyframe = TimeDelta::Millis(500);
constexpr auto kMaxWaitForFrame = TimeDelta::Millis(1500);
class VideoStreamBufferControllerFixture
: public ::testing::WithParamInterface<std::tuple<bool, std::string>>,
public FrameSchedulingReceiver {
public:
VideoStreamBufferControllerFixture()
: sync_decoding_(std::get<0>(GetParam())),
field_trials_(std::get<1>(GetParam())),
time_controller_(kClockStart),
clock_(time_controller_.GetClock()),
fake_metronome_(TimeDelta::Millis(16)),
decode_sync_(clock_,
&fake_metronome_,
time_controller_.GetMainThread()),
timing_(clock_, field_trials_),
buffer_(std::make_unique<VideoStreamBufferController>(
clock_,
time_controller_.GetMainThread(),
&timing_,
&stats_callback_,
this,
kMaxWaitForKeyframe,
kMaxWaitForFrame,
sync_decoding_ ? decode_sync_.CreateSynchronizedFrameScheduler()
: std::make_unique<TaskQueueFrameDecodeScheduler>(
clock_,
time_controller_.GetMainThread()),
field_trials_)) {
// Avoid starting with negative render times.
timing_.set_min_playout_delay(TimeDelta::Millis(10));
ON_CALL(stats_callback_, OnDroppedFrames)
.WillByDefault(
[this](auto num_dropped) { dropped_frames_ += num_dropped; });
}
~VideoStreamBufferControllerFixture() override {
if (buffer_) {
buffer_->Stop();
}
time_controller_.AdvanceTime(TimeDelta::Zero());
}
void OnEncodedFrame(std::unique_ptr<EncodedFrame> frame) override {
RTC_DCHECK(frame);
SetWaitResult(std::move(frame));
}
void OnDecodableFrameTimeout(TimeDelta wait_time) override {
SetWaitResult(wait_time);
}
using WaitResult =
absl::variant<std::unique_ptr<EncodedFrame>, TimeDelta /*wait_time*/>;
absl::optional<WaitResult> WaitForFrameOrTimeout(TimeDelta wait) {
if (wait_result_) {
return std::move(wait_result_);
}
time_controller_.AdvanceTime(TimeDelta::Zero());
if (wait_result_) {
return std::move(wait_result_);
}
Timestamp now = clock_->CurrentTime();
// TODO(bugs.webrtc.org/13756): Remove this when rtc::Thread uses uses
// Timestamp instead of an integer milliseconds. This extra wait is needed
// for some tests that use the metronome. This is due to rounding
// milliseconds, affecting the precision of simulated time controller uses
// when posting tasks from threads.
TimeDelta potential_extra_wait =
Timestamp::Millis((now + wait).ms()) - (now + wait);
time_controller_.AdvanceTime(wait);
if (potential_extra_wait > TimeDelta::Zero()) {
time_controller_.AdvanceTime(potential_extra_wait);
}
return std::move(wait_result_);
}
void StartNextDecode() {
ResetLastResult();
buffer_->StartNextDecode(false);
}
void StartNextDecodeForceKeyframe() {
ResetLastResult();
buffer_->StartNextDecode(true);
}
void ResetLastResult() { wait_result_.reset(); }
int dropped_frames() const { return dropped_frames_; }
protected:
const bool sync_decoding_;
test::ScopedKeyValueConfig field_trials_;
GlobalSimulatedTimeController time_controller_;
Clock* const clock_;
test::FakeMetronome fake_metronome_;
DecodeSynchronizer decode_sync_;
::testing::NiceMock<VCMTimingTest> timing_;
::testing::NiceMock<VCMReceiveStatisticsCallbackMock> stats_callback_;
std::unique_ptr<VideoStreamBufferController> buffer_;
private:
void SetWaitResult(WaitResult result) {
RTC_DCHECK(!wait_result_);
if (absl::holds_alternative<std::unique_ptr<EncodedFrame>>(result)) {
RTC_DCHECK(absl::get<std::unique_ptr<EncodedFrame>>(result));
}
wait_result_.emplace(std::move(result));
}
uint32_t dropped_frames_ = 0;
absl::optional<WaitResult> wait_result_;
};
class VideoStreamBufferControllerTest
: public ::testing::Test,
public VideoStreamBufferControllerFixture {};
TEST_P(VideoStreamBufferControllerTest,
InitialTimeoutAfterKeyframeTimeoutPeriod) {
StartNextDecodeForceKeyframe();
// No frame inserted. Timeout expected.
EXPECT_THAT(WaitForFrameOrTimeout(kMaxWaitForKeyframe), TimedOut());
// No new timeout set since receiver has not started new decode.
ResetLastResult();
EXPECT_THAT(WaitForFrameOrTimeout(kMaxWaitForKeyframe), Eq(absl::nullopt));
// Now that receiver has asked for new frame, a new timeout can occur.
StartNextDecodeForceKeyframe();
EXPECT_THAT(WaitForFrameOrTimeout(kMaxWaitForKeyframe), TimedOut());
}
TEST_P(VideoStreamBufferControllerTest, KeyFramesAreScheduled) {
StartNextDecodeForceKeyframe();
time_controller_.AdvanceTime(TimeDelta::Millis(50));
auto frame = test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build();
buffer_->InsertFrame(std::move(frame));
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
}
TEST_P(VideoStreamBufferControllerTest,
DeltaFrameTimeoutAfterKeyframeExtracted) {
StartNextDecodeForceKeyframe();
time_controller_.AdvanceTime(TimeDelta::Millis(50));
auto frame = test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build();
buffer_->InsertFrame(std::move(frame));
EXPECT_THAT(WaitForFrameOrTimeout(kMaxWaitForKeyframe),
Frame(test::WithId(0)));
StartNextDecode();
time_controller_.AdvanceTime(TimeDelta::Millis(50));
// Timeouts should now happen at the normal frequency.
const int expected_timeouts = 5;
for (int i = 0; i < expected_timeouts; ++i) {
EXPECT_THAT(WaitForFrameOrTimeout(kMaxWaitForFrame), TimedOut());
StartNextDecode();
}
}
TEST_P(VideoStreamBufferControllerTest, DependantFramesAreScheduled) {
StartNextDecodeForceKeyframe();
buffer_->InsertFrame(test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build());
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
StartNextDecode();
time_controller_.AdvanceTime(kFps30Delay);
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(1)
.Time(kFps30Rtp)
.AsLast()
.Refs({0})
.Build());
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Frame(test::WithId(1)));
}
TEST_P(VideoStreamBufferControllerTest, SpatialLayersAreScheduled) {
StartNextDecodeForceKeyframe();
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(0).SpatialLayer(0).Time(0).Build()));
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(1).SpatialLayer(1).Time(0).Build()));
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(2).SpatialLayer(2).Time(0).AsLast().Build()));
EXPECT_THAT(
WaitForFrameOrTimeout(TimeDelta::Zero()),
Frame(AllOf(test::WithId(0), test::FrameWithSize(3 * kFrameSize))));
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(3).Time(kFps30Rtp).SpatialLayer(0).Build()));
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(4).Time(kFps30Rtp).SpatialLayer(1).Build()));
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(test::FakeFrameBuilder()
.Id(5)
.Time(kFps30Rtp)
.SpatialLayer(2)
.AsLast()
.Build()));
StartNextDecode();
EXPECT_THAT(
WaitForFrameOrTimeout(kFps30Delay * 10),
Frame(AllOf(test::WithId(3), test::FrameWithSize(3 * kFrameSize))));
}
TEST_P(VideoStreamBufferControllerTest,
OutstandingFrameTasksAreCancelledAfterDeletion) {
StartNextDecodeForceKeyframe();
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build()));
// Get keyframe. Delta frame should now be scheduled.
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
StartNextDecode();
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(test::FakeFrameBuilder()
.Id(1)
.Time(kFps30Rtp)
.AsLast()
.Refs({0})
.Build()));
buffer_->Stop();
// Wait for 2x max wait time. Since we stopped, this should cause no timeouts
// or frame-ready callbacks.
EXPECT_THAT(WaitForFrameOrTimeout(kMaxWaitForFrame * 2), Eq(absl::nullopt));
}
TEST_P(VideoStreamBufferControllerTest, FramesWaitForDecoderToComplete) {
StartNextDecodeForceKeyframe();
// Start with a keyframe.
buffer_->InsertFrame(test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build());
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
ResetLastResult();
// Insert a delta frame.
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(1)
.Time(kFps30Rtp)
.AsLast()
.Refs({0})
.Build());
// Advancing time should not result in a frame since the scheduler has not
// been signalled that we are ready.
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Eq(absl::nullopt));
// Signal ready.
StartNextDecode();
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Frame(test::WithId(1)));
}
TEST_P(VideoStreamBufferControllerTest, LateFrameDropped) {
StartNextDecodeForceKeyframe();
// F1
// /
// F0 --> F2
buffer_->InsertFrame(test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build());
// Start with a keyframe.
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
StartNextDecode();
// Simulate late F1 which arrives after F2.
time_controller_.AdvanceTime(kFps30Delay * 2);
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(2)
.Time(2 * kFps30Rtp)
.AsLast()
.Refs({0})
.Build());
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Frame(test::WithId(2)));
StartNextDecode();
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(1)
.Time(1 * kFps30Rtp)
.AsLast()
.Refs({0})
.Build());
// Confirm frame 1 is never scheduled by timing out.
EXPECT_THAT(WaitForFrameOrTimeout(kMaxWaitForFrame), TimedOut());
}
TEST_P(VideoStreamBufferControllerTest, FramesFastForwardOnSystemHalt) {
StartNextDecodeForceKeyframe();
// F1
// /
// F0 --> F2
buffer_->InsertFrame(test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build());
// Start with a keyframe.
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
time_controller_.AdvanceTime(kFps30Delay);
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(1)
.Time(kFps30Rtp)
.AsLast()
.Refs({0})
.Build());
time_controller_.AdvanceTime(kFps30Delay);
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(2)
.Time(2 * kFps30Rtp)
.AsLast()
.Refs({0})
.Build());
// Halting time should result in F1 being skipped.
time_controller_.AdvanceTime(kFps30Delay * 2);
StartNextDecode();
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Frame(test::WithId(2)));
EXPECT_EQ(dropped_frames(), 1);
}
TEST_P(VideoStreamBufferControllerTest, ForceKeyFrame) {
StartNextDecodeForceKeyframe();
// Initial keyframe.
buffer_->InsertFrame(test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build());
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
StartNextDecodeForceKeyframe();
// F2 is the next keyframe, and should be extracted since a keyframe was
// forced.
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(1)
.Time(kFps30Rtp)
.AsLast()
.Refs({0})
.Build());
buffer_->InsertFrame(
test::FakeFrameBuilder().Id(2).Time(kFps30Rtp * 2).AsLast().Build());
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay * 3), Frame(test::WithId(2)));
}
TEST_P(VideoStreamBufferControllerTest, SlowDecoderDropsTemporalLayers) {
StartNextDecodeForceKeyframe();
// 2 temporal layers, at 15fps per layer to make 30fps total.
// Decoder is slower than 30fps, so last_frame() will be skipped.
// F1 --> F3 --> F5
// / / /
// F0 --> F2 --> F4
buffer_->InsertFrame(test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build());
// Keyframe received.
// Don't start next decode until slow delay.
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
time_controller_.AdvanceTime(kFps30Delay);
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(1)
.Time(1 * kFps30Rtp)
.Refs({0})
.AsLast()
.Build());
time_controller_.AdvanceTime(kFps30Delay);
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(2)
.Time(2 * kFps30Rtp)
.Refs({0})
.AsLast()
.Build());
// Simulate decode taking 3x FPS rate.
time_controller_.AdvanceTime(kFps30Delay * 1.5);
StartNextDecode();
// F2 is the best frame since decoding was so slow that F1 is too old.
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay * 2), Frame(test::WithId(2)));
EXPECT_EQ(dropped_frames(), 1);
time_controller_.AdvanceTime(kFps30Delay / 2);
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(3)
.Time(3 * kFps30Rtp)
.Refs({1, 2})
.AsLast()
.Build());
time_controller_.AdvanceTime(kFps30Delay / 2);
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(4)
.Time(4 * kFps30Rtp)
.Refs({2})
.AsLast()
.Build());
time_controller_.AdvanceTime(kFps30Delay / 2);
// F4 is the best frame since decoding was so slow that F1 is too old.
time_controller_.AdvanceTime(kFps30Delay);
StartNextDecode();
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Frame(test::WithId(4)));
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(5)
.Time(5 * kFps30Rtp)
.Refs({3, 4})
.AsLast()
.Build());
time_controller_.AdvanceTime(kFps30Delay / 2);
// F5 is not decodable since F4 was decoded, so a timeout is expected.
time_controller_.AdvanceTime(TimeDelta::Millis(10));
StartNextDecode();
EXPECT_THAT(WaitForFrameOrTimeout(kMaxWaitForFrame), TimedOut());
// TODO(bugs.webrtc.org/13343): This should be 2 dropped frames since frames 1
// and 3 were dropped. However, frame_buffer2 does not mark frame 3 as dropped
// which is a bug. Uncomment below when that is fixed for frame_buffer2 is
// deleted.
// EXPECT_EQ(dropped_frames(), 2);
}
TEST_P(VideoStreamBufferControllerTest,
NewFrameInsertedWhileWaitingToReleaseFrame) {
StartNextDecodeForceKeyframe();
// Initial keyframe.
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build()));
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
time_controller_.AdvanceTime(kFps30Delay / 2);
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(test::FakeFrameBuilder()
.Id(1)
.Time(kFps30Rtp)
.Refs({0})
.AsLast()
.Build()));
StartNextDecode();
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Eq(absl::nullopt));
// Scheduler is waiting to deliver Frame 1 now. Insert Frame 2. Frame 1 should
// be delivered still.
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(test::FakeFrameBuilder()
.Id(2)
.Time(kFps30Rtp * 2)
.Refs({0})
.AsLast()
.Build()));
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Frame(test::WithId(1)));
}
TEST_P(VideoStreamBufferControllerTest, SameFrameNotScheduledTwice) {
// A frame could be scheduled twice if last_frame() arrive out-of-order but
// the older frame is old enough to be fast forwarded.
//
// 1. F2 arrives and is scheduled.
// 2. F3 arrives, but scheduling will not change since F2 is next.
// 3. F1 arrives late and scheduling is checked since it is before F2. F1
// fast-forwarded since it is older.
//
// F2 is the best frame, but should only be scheduled once, followed by F3.
StartNextDecodeForceKeyframe();
// First keyframe.
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build()));
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Millis(15)),
Frame(test::WithId(0)));
StartNextDecode();
// F2 arrives and is scheduled.
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(2).Time(2 * kFps30Rtp).AsLast().Build()));
// F3 arrives before F2 is extracted.
time_controller_.AdvanceTime(kFps30Delay);
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(3).Time(3 * kFps30Rtp).AsLast().Build()));
// F1 arrives and is fast-forwarded since it is too late.
// F2 is already scheduled and should not be rescheduled.
time_controller_.AdvanceTime(kFps30Delay / 2);
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(1).Time(1 * kFps30Rtp).AsLast().Build()));
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Frame(test::WithId(2)));
StartNextDecode();
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Frame(test::WithId(3)));
StartNextDecode();
EXPECT_THAT(WaitForFrameOrTimeout(kMaxWaitForFrame), TimedOut());
EXPECT_EQ(dropped_frames(), 1);
}
TEST_P(VideoStreamBufferControllerTest, TestStatsCallback) {
EXPECT_CALL(stats_callback_,
OnCompleteFrame(true, kFrameSize, VideoContentType::UNSPECIFIED));
EXPECT_CALL(stats_callback_, OnFrameBufferTimingsUpdated);
// Fake timing having received decoded frame.
timing_.StopDecodeTimer(TimeDelta::Millis(1), clock_->CurrentTime());
StartNextDecodeForceKeyframe();
buffer_->InsertFrame(test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build());
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
// Flush stats posted on the decode queue.
time_controller_.AdvanceTime(TimeDelta::Zero());
}
TEST_P(VideoStreamBufferControllerTest,
FrameCompleteCalledOnceForDuplicateFrame) {
EXPECT_CALL(stats_callback_,
OnCompleteFrame(true, kFrameSize, VideoContentType::UNSPECIFIED))
.Times(1);
StartNextDecodeForceKeyframe();
buffer_->InsertFrame(test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build());
buffer_->InsertFrame(test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build());
// Flush stats posted on the decode queue.
time_controller_.AdvanceTime(TimeDelta::Zero());
}
TEST_P(VideoStreamBufferControllerTest,
FrameCompleteCalledOnceForSingleTemporalUnit) {
StartNextDecodeForceKeyframe();
// `OnCompleteFrame` should not be called for the first two frames since they
// do not complete the temporal layer.
EXPECT_CALL(stats_callback_, OnCompleteFrame(_, _, _)).Times(0);
buffer_->InsertFrame(test::FakeFrameBuilder().Id(0).Time(0).Build());
buffer_->InsertFrame(
test::FakeFrameBuilder().Id(1).Time(0).Refs({0}).Build());
time_controller_.AdvanceTime(TimeDelta::Zero());
// Flush stats posted on the decode queue.
::testing::Mock::VerifyAndClearExpectations(&stats_callback_);
// Note that this frame is not marked as a keyframe since the last spatial
// layer has dependencies.
EXPECT_CALL(stats_callback_,
OnCompleteFrame(false, kFrameSize, VideoContentType::UNSPECIFIED))
.Times(1);
buffer_->InsertFrame(
test::FakeFrameBuilder().Id(2).Time(0).Refs({0, 1}).AsLast().Build());
// Flush stats posted on the decode queue.
time_controller_.AdvanceTime(TimeDelta::Zero());
}
TEST_P(VideoStreamBufferControllerTest,
FrameCompleteCalledOnceForCompleteTemporalUnit) {
// FrameBuffer2 logs the complete frame on the arrival of the last layer.
StartNextDecodeForceKeyframe();
// `OnCompleteFrame` should not be called for the first two frames since they
// do not complete the temporal layer. Frame 1 arrives later, at which time
// this frame can finally be considered complete.
EXPECT_CALL(stats_callback_, OnCompleteFrame(_, _, _)).Times(0);
buffer_->InsertFrame(test::FakeFrameBuilder().Id(0).Time(0).Build());
buffer_->InsertFrame(
test::FakeFrameBuilder().Id(2).Time(0).Refs({0, 1}).AsLast().Build());
time_controller_.AdvanceTime(TimeDelta::Zero());
// Flush stats posted on the decode queue.
::testing::Mock::VerifyAndClearExpectations(&stats_callback_);
EXPECT_CALL(stats_callback_,
OnCompleteFrame(false, kFrameSize, VideoContentType::UNSPECIFIED))
.Times(1);
buffer_->InsertFrame(
test::FakeFrameBuilder().Id(1).Time(0).Refs({0}).Build());
// Flush stats posted on the decode queue.
time_controller_.AdvanceTime(TimeDelta::Zero());
}
// Note: This test takes a long time to run if the fake metronome is active.
// Since the test needs to wait for the timestamp to rollover, it has a fake
// delay of around 6.5 hours. Even though time is simulated, this will be
// around 1,500,000 metronome tick invocations.
TEST_P(VideoStreamBufferControllerTest, NextFrameWithOldTimestamp) {
// Test inserting 31 frames and pause the stream for a long time before
// frame 32.
StartNextDecodeForceKeyframe();
constexpr uint32_t kBaseRtp = std::numeric_limits<uint32_t>::max() / 2;
// First keyframe. The receive time must be explicitly set in this test since
// the RTP derived time used in all tests does not work when the long pause
// happens later in the test.
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(0)
.Time(kBaseRtp)
.ReceivedTime(clock_->CurrentTime())
.AsLast()
.Build());
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Frame(test::WithId(0)));
// 1 more frame to warmup VCMTiming for 30fps.
StartNextDecode();
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(1)
.Time(kBaseRtp + kFps30Rtp)
.ReceivedTime(clock_->CurrentTime())
.AsLast()
.Build());
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Frame(test::WithId(1)));
// Pause the stream for such a long time it incurs an RTP timestamp rollover
// by over half.
constexpr uint32_t kLastRtp = kBaseRtp + kFps30Rtp;
constexpr uint32_t kRolloverRtp =
kLastRtp + std::numeric_limits<uint32_t>::max() / 2 + 1;
constexpr Frequency kRtpHz = Frequency::KiloHertz(90);
// Pause for corresponding delay such that RTP timestamp would increase this
// much at 30fps.
constexpr TimeDelta kRolloverDelay =
(std::numeric_limits<uint32_t>::max() / 2 + 1) / kRtpHz;
// Avoid timeout being set while waiting for the frame and before the receiver
// is ready.
ResetLastResult();
EXPECT_THAT(WaitForFrameOrTimeout(kMaxWaitForFrame), Eq(absl::nullopt));
time_controller_.AdvanceTime(kRolloverDelay - kMaxWaitForFrame);
StartNextDecode();
buffer_->InsertFrame(test::FakeFrameBuilder()
.Id(2)
.Time(kRolloverRtp)
.ReceivedTime(clock_->CurrentTime())
.AsLast()
.Build());
// FrameBuffer2 drops the frame, while FrameBuffer3 will continue the stream.
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Frame(test::WithId(2)));
}
TEST_P(VideoStreamBufferControllerTest,
FrameNotSetForDecodedIfFrameBufferBecomesNonDecodable) {
// This can happen if the frame buffer receives non-standard input. This test
// will simply clear the frame buffer to replicate this.
StartNextDecodeForceKeyframe();
// Initial keyframe.
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(0).Time(0).SpatialLayer(1).AsLast().Build()));
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
// Insert a frame that will become non-decodable.
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(test::FakeFrameBuilder()
.Id(11)
.Time(kFps30Rtp)
.Refs({0})
.SpatialLayer(1)
.AsLast()
.Build()));
StartNextDecode();
// Second layer inserted after last layer for the same frame out-of-order.
// This second frame requires some older frame to be decoded and so now the
// super-frame is no longer decodable despite already being scheduled.
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(test::FakeFrameBuilder()
.Id(10)
.Time(kFps30Rtp)
.SpatialLayer(0)
.Refs({2})
.Build()));
EXPECT_THAT(WaitForFrameOrTimeout(kMaxWaitForFrame), TimedOut());
// Ensure that this frame can be decoded later.
StartNextDecode();
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(test::FakeFrameBuilder()
.Id(2)
.Time(kFps30Rtp / 2)
.SpatialLayer(0)
.Refs({0})
.AsLast()
.Build()));
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Frame(test::WithId(2)));
StartNextDecode();
EXPECT_THAT(WaitForFrameOrTimeout(kFps30Delay), Frame(test::WithId(10)));
}
INSTANTIATE_TEST_SUITE_P(VideoStreamBufferController,
VideoStreamBufferControllerTest,
::testing::Combine(::testing::Bool(),
::testing::Values("")),
[](const auto& info) {
return std::get<0>(info.param) ? "SyncDecoding"
: "UnsyncedDecoding";
});
class LowLatencyVideoStreamBufferControllerTest
: public ::testing::Test,
public VideoStreamBufferControllerFixture {};
TEST_P(LowLatencyVideoStreamBufferControllerTest,
FramesDecodedInstantlyWithLowLatencyRendering) {
// Initial keyframe.
StartNextDecodeForceKeyframe();
timing_.set_min_playout_delay(TimeDelta::Zero());
timing_.set_max_playout_delay(TimeDelta::Millis(10));
auto frame = test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build();
// Playout delay of 0 implies low-latency rendering.
frame->SetPlayoutDelay({0, 10});
buffer_->InsertFrame(std::move(frame));
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
// Delta frame would normally wait here, but should decode at the pacing rate
// in low-latency mode.
StartNextDecode();
frame = test::FakeFrameBuilder().Id(1).Time(kFps30Rtp).AsLast().Build();
frame->SetPlayoutDelay({0, 10});
buffer_->InsertFrame(std::move(frame));
// Pacing is set to 16ms in the field trial so we should not decode yet.
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Eq(absl::nullopt));
time_controller_.AdvanceTime(TimeDelta::Millis(16));
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(1)));
}
TEST_P(LowLatencyVideoStreamBufferControllerTest, ZeroPlayoutDelayFullQueue) {
// Initial keyframe.
StartNextDecodeForceKeyframe();
timing_.set_min_playout_delay(TimeDelta::Zero());
timing_.set_max_playout_delay(TimeDelta::Millis(10));
auto frame = test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build();
// Playout delay of 0 implies low-latency rendering.
frame->SetPlayoutDelay({0, 10});
buffer_->InsertFrame(std::move(frame));
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
// Queue up 5 frames (configured max queue size for 0-playout delay pacing).
for (int id = 1; id <= 6; ++id) {
frame =
test::FakeFrameBuilder().Id(id).Time(kFps30Rtp * id).AsLast().Build();
frame->SetPlayoutDelay({0, 10});
buffer_->InsertFrame(std::move(frame));
}
// The queue is at its max size for zero playout delay pacing, so the pacing
// should be ignored and the next frame should be decoded instantly.
StartNextDecode();
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(1)));
}
TEST_P(LowLatencyVideoStreamBufferControllerTest,
MinMaxDelayZeroLowLatencyMode) {
// Initial keyframe.
StartNextDecodeForceKeyframe();
timing_.set_min_playout_delay(TimeDelta::Zero());
timing_.set_max_playout_delay(TimeDelta::Zero());
auto frame = test::FakeFrameBuilder().Id(0).Time(0).AsLast().Build();
// Playout delay of 0 implies low-latency rendering.
frame->SetPlayoutDelay({0, 0});
buffer_->InsertFrame(std::move(frame));
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(0)));
// Delta frame would normally wait here, but should decode at the pacing rate
// in low-latency mode.
StartNextDecode();
frame = test::FakeFrameBuilder().Id(1).Time(kFps30Rtp).AsLast().Build();
frame->SetPlayoutDelay({0, 0});
buffer_->InsertFrame(std::move(frame));
// The min/max=0 version of low-latency rendering will result in a large
// negative decode wait time, so the frame should be ready right away.
EXPECT_THAT(WaitForFrameOrTimeout(TimeDelta::Zero()), Frame(test::WithId(1)));
}
INSTANTIATE_TEST_SUITE_P(
VideoStreamBufferController,
LowLatencyVideoStreamBufferControllerTest,
::testing::Combine(
::testing::Bool(),
::testing::Values(
"WebRTC-ZeroPlayoutDelay/min_pacing:16ms,max_decode_queue_size:5/",
"WebRTC-ZeroPlayoutDelay/"
"min_pacing:16ms,max_decode_queue_size:5/")));
class IncomingTimestampVideoStreamBufferControllerTest
: public ::testing::Test,
public VideoStreamBufferControllerFixture {};
TEST_P(IncomingTimestampVideoStreamBufferControllerTest,
IncomingTimestampOnMarkerBitOnly) {
StartNextDecodeForceKeyframe();
EXPECT_CALL(timing_, IncomingTimestampMocked)
.Times(field_trials_.IsDisabled("WebRTC-IncomingTimestampOnMarkerBitOnly")
? 3
: 1);
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(0).SpatialLayer(0).Time(0).Build()));
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(1).SpatialLayer(1).Time(0).Build()));
buffer_->InsertFrame(WithReceiveTimeFromRtpTimestamp(
test::FakeFrameBuilder().Id(2).SpatialLayer(2).Time(0).AsLast().Build()));
}
INSTANTIATE_TEST_SUITE_P(
VideoStreamBufferController,
IncomingTimestampVideoStreamBufferControllerTest,
::testing::Combine(
::testing::Bool(),
::testing::Values(
"WebRTC-IncomingTimestampOnMarkerBitOnly/Enabled/",
"WebRTC-IncomingTimestampOnMarkerBitOnly/Disabled/")));
} // namespace webrtc