webrtc/modules/video_coding/video_codec_initializer_unittest.cc
Sergey Silkin fafeac3517 Use codec's bitrate limits if SVC is off.
Adding SVC rate allocator and layering configurator caused regression
for VP9 non-SVC senders. SVC bitrate limits, which were supposed to
be used only when spatial layering is enabled, are applied when
encoding single spatial layer. E.g. for VP9 360p sender maximum bitrate
is limited to 500kbps.

This fixes the regression. If sender is configured to send VP9 single
layer then codec's bitrate limits are applied to this layer.

Bug: webrtc:9151, chromium:831093
Change-Id: Ia1ae4087155ad7917a3443304a21532f1e68ea65
Reviewed-on: https://webrtc-review.googlesource.com/69813
Commit-Queue: Sergey Silkin <ssilkin@webrtc.org>
Reviewed-by: Michael Horowitz <mhoro@webrtc.org>
Reviewed-by: Rasmus Brandt <brandtr@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#22862}
2018-04-13 16:11:18 +00:00

287 lines
12 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/include/video_codec_initializer.h"
#include "api/video_codecs/video_encoder.h"
#include "common_types.h" // NOLINT(build/include)
#include "common_video/include/video_bitrate_allocator.h"
#include "modules/video_coding/codecs/vp8/temporal_layers.h"
#include "modules/video_coding/codecs/vp9/include/vp9_globals.h"
#include "rtc_base/refcountedobject.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
static const int kDefaultWidth = 1280;
static const int kDefaultHeight = 720;
static const int kDefaultFrameRate = 30;
static const uint32_t kDefaultMinBitrateBps = 60000;
static const uint32_t kDefaultTargetBitrateBps = 2000000;
static const uint32_t kDefaultMaxBitrateBps = 2000000;
static const uint32_t kDefaultMinTransmitBitrateBps = 400000;
static const int kDefaultMaxQp = 48;
static const uint32_t kScreenshareTl0BitrateBps = 100000;
static const uint32_t kScreenshareCodecTargetBitrateBps = 200000;
static const uint32_t kScreenshareDefaultFramerate = 5;
// Bitrates for the temporal layers of the higher screenshare simulcast stream.
static const uint32_t kHighScreenshareTl0Bps = 800000;
static const uint32_t kHighScreenshareTl1Bps = 1200000;
} // namespace
// TODO(sprang): Extend coverage to handle the rest of the codec initializer.
class VideoCodecInitializerTest : public ::testing::Test {
public:
VideoCodecInitializerTest() : nack_enabled_(false) {}
virtual ~VideoCodecInitializerTest() {}
protected:
void SetUpFor(VideoCodecType type,
int num_spatial_streams,
int num_temporal_streams,
bool screenshare) {
config_ = VideoEncoderConfig();
config_.codec_type = type;
if (screenshare) {
config_.min_transmit_bitrate_bps = kDefaultMinTransmitBitrateBps;
config_.content_type = VideoEncoderConfig::ContentType::kScreen;
}
if (type == VideoCodecType::kVideoCodecVP8) {
config_.number_of_streams = num_spatial_streams;
VideoCodecVP8 vp8_settings = VideoEncoder::GetDefaultVp8Settings();
vp8_settings.numberOfTemporalLayers = num_temporal_streams;
config_.encoder_specific_settings = new rtc::RefCountedObject<
webrtc::VideoEncoderConfig::Vp8EncoderSpecificSettings>(vp8_settings);
} else if (type == VideoCodecType::kVideoCodecVP9) {
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = num_spatial_streams;
vp9_settings.numberOfTemporalLayers = num_temporal_streams;
config_.encoder_specific_settings = new rtc::RefCountedObject<
webrtc::VideoEncoderConfig::Vp9EncoderSpecificSettings>(vp9_settings);
} else if (type != VideoCodecType::kVideoCodecMultiplex) {
ADD_FAILURE() << "Unexpected codec type: " << type;
}
}
bool InitializeCodec() {
codec_out_ = VideoCodec();
bitrate_allocator_out_.reset();
temporal_layers_.clear();
if (!VideoCodecInitializer::SetupCodec(config_, streams_, nack_enabled_,
&codec_out_,
&bitrate_allocator_out_)) {
return false;
}
if (codec_out_.codecType == VideoCodecType::kVideoCodecMultiplex)
return true;
// Make sure temporal layers instances have been created.
if (codec_out_.codecType == VideoCodecType::kVideoCodecVP8) {
for (int i = 0; i < codec_out_.numberOfSimulcastStreams; ++i) {
temporal_layers_.emplace_back(
TemporalLayers::CreateTemporalLayers(codec_out_, i));
}
}
return true;
}
VideoStream DefaultStream() {
VideoStream stream;
stream.width = kDefaultWidth;
stream.height = kDefaultHeight;
stream.max_framerate = kDefaultFrameRate;
stream.min_bitrate_bps = kDefaultMinBitrateBps;
stream.target_bitrate_bps = kDefaultTargetBitrateBps;
stream.max_bitrate_bps = kDefaultMaxBitrateBps;
stream.max_qp = kDefaultMaxQp;
stream.num_temporal_layers = 1;
stream.active = true;
return stream;
}
VideoStream DefaultScreenshareStream() {
VideoStream stream = DefaultStream();
stream.min_bitrate_bps = 30000;
stream.target_bitrate_bps = kScreenshareTl0BitrateBps;
stream.max_bitrate_bps = 1000000;
stream.max_framerate = kScreenshareDefaultFramerate;
stream.num_temporal_layers = 2;
stream.active = true;
return stream;
}
// Input settings.
VideoEncoderConfig config_;
std::vector<VideoStream> streams_;
bool nack_enabled_;
// Output.
VideoCodec codec_out_;
std::unique_ptr<VideoBitrateAllocator> bitrate_allocator_out_;
std::vector<std::unique_ptr<TemporalLayers>> temporal_layers_;
};
TEST_F(VideoCodecInitializerTest, SingleStreamVp8Screenshare) {
SetUpFor(VideoCodecType::kVideoCodecVP8, 1, 1, true);
streams_.push_back(DefaultStream());
EXPECT_TRUE(InitializeCodec());
BitrateAllocation bitrate_allocation = bitrate_allocator_out_->GetAllocation(
kDefaultTargetBitrateBps, kDefaultFrameRate);
EXPECT_EQ(1u, codec_out_.numberOfSimulcastStreams);
EXPECT_EQ(1u, codec_out_.VP8()->numberOfTemporalLayers);
EXPECT_EQ(kDefaultTargetBitrateBps, bitrate_allocation.get_sum_bps());
}
TEST_F(VideoCodecInitializerTest, SingleStreamVp8ScreenshareInactive) {
SetUpFor(VideoCodecType::kVideoCodecVP8, 1, 1, true);
VideoStream inactive_stream = DefaultStream();
inactive_stream.active = false;
streams_.push_back(inactive_stream);
EXPECT_TRUE(InitializeCodec());
BitrateAllocation bitrate_allocation = bitrate_allocator_out_->GetAllocation(
kDefaultTargetBitrateBps, kDefaultFrameRate);
EXPECT_EQ(1u, codec_out_.numberOfSimulcastStreams);
EXPECT_EQ(1u, codec_out_.VP8()->numberOfTemporalLayers);
EXPECT_EQ(0U, bitrate_allocation.get_sum_bps());
}
TEST_F(VideoCodecInitializerTest, TemporalLayeredVp8Screenshare) {
SetUpFor(VideoCodecType::kVideoCodecVP8, 1, 2, true);
streams_.push_back(DefaultScreenshareStream());
EXPECT_TRUE(InitializeCodec());
EXPECT_EQ(1u, codec_out_.numberOfSimulcastStreams);
EXPECT_EQ(2u, codec_out_.VP8()->numberOfTemporalLayers);
BitrateAllocation bitrate_allocation = bitrate_allocator_out_->GetAllocation(
kScreenshareCodecTargetBitrateBps, kScreenshareDefaultFramerate);
EXPECT_EQ(kScreenshareCodecTargetBitrateBps,
bitrate_allocation.get_sum_bps());
EXPECT_EQ(kScreenshareTl0BitrateBps, bitrate_allocation.GetBitrate(0, 0));
}
TEST_F(VideoCodecInitializerTest, SimulcastVp8Screenshare) {
SetUpFor(VideoCodecType::kVideoCodecVP8, 2, 1, true);
streams_.push_back(DefaultScreenshareStream());
VideoStream video_stream = DefaultStream();
video_stream.max_framerate = kScreenshareDefaultFramerate;
streams_.push_back(video_stream);
EXPECT_TRUE(InitializeCodec());
EXPECT_EQ(2u, codec_out_.numberOfSimulcastStreams);
EXPECT_EQ(1u, codec_out_.VP8()->numberOfTemporalLayers);
const uint32_t max_bitrate_bps =
streams_[0].target_bitrate_bps + streams_[1].max_bitrate_bps;
BitrateAllocation bitrate_allocation = bitrate_allocator_out_->GetAllocation(
max_bitrate_bps, kScreenshareDefaultFramerate);
EXPECT_EQ(max_bitrate_bps, bitrate_allocation.get_sum_bps());
EXPECT_EQ(static_cast<uint32_t>(streams_[0].target_bitrate_bps),
bitrate_allocation.GetSpatialLayerSum(0));
EXPECT_EQ(static_cast<uint32_t>(streams_[1].max_bitrate_bps),
bitrate_allocation.GetSpatialLayerSum(1));
}
// Tests that when a video stream is inactive, then the bitrate allocation will
// be 0 for that stream.
TEST_F(VideoCodecInitializerTest, SimulcastVp8ScreenshareInactive) {
SetUpFor(VideoCodecType::kVideoCodecVP8, 2, 1, true);
streams_.push_back(DefaultScreenshareStream());
VideoStream inactive_video_stream = DefaultStream();
inactive_video_stream.active = false;
inactive_video_stream.max_framerate = kScreenshareDefaultFramerate;
streams_.push_back(inactive_video_stream);
EXPECT_TRUE(InitializeCodec());
EXPECT_EQ(2u, codec_out_.numberOfSimulcastStreams);
EXPECT_EQ(1u, codec_out_.VP8()->numberOfTemporalLayers);
const uint32_t target_bitrate =
streams_[0].target_bitrate_bps + streams_[1].target_bitrate_bps;
BitrateAllocation bitrate_allocation = bitrate_allocator_out_->GetAllocation(
target_bitrate, kScreenshareDefaultFramerate);
EXPECT_EQ(static_cast<uint32_t>(streams_[0].max_bitrate_bps),
bitrate_allocation.get_sum_bps());
EXPECT_EQ(static_cast<uint32_t>(streams_[0].max_bitrate_bps),
bitrate_allocation.GetSpatialLayerSum(0));
EXPECT_EQ(0U, bitrate_allocation.GetSpatialLayerSum(1));
}
TEST_F(VideoCodecInitializerTest, HighFpsSimulcastVp8Screenshare) {
// Two simulcast streams, the lower one using legacy settings (two temporal
// streams, 5fps), the higher one using 3 temporal streams and 30fps.
SetUpFor(VideoCodecType::kVideoCodecVP8, 2, 3, true);
streams_.push_back(DefaultScreenshareStream());
VideoStream video_stream = DefaultStream();
video_stream.num_temporal_layers = 3;
streams_.push_back(video_stream);
EXPECT_TRUE(InitializeCodec());
EXPECT_EQ(2u, codec_out_.numberOfSimulcastStreams);
EXPECT_EQ(3u, codec_out_.VP8()->numberOfTemporalLayers);
const uint32_t max_bitrate_bps =
streams_[0].target_bitrate_bps + streams_[1].max_bitrate_bps;
BitrateAllocation bitrate_allocation =
bitrate_allocator_out_->GetAllocation(max_bitrate_bps, kDefaultFrameRate);
EXPECT_EQ(max_bitrate_bps, bitrate_allocation.get_sum_bps());
EXPECT_EQ(static_cast<uint32_t>(streams_[0].target_bitrate_bps),
bitrate_allocation.GetSpatialLayerSum(0));
EXPECT_EQ(static_cast<uint32_t>(streams_[1].max_bitrate_bps),
bitrate_allocation.GetSpatialLayerSum(1));
EXPECT_EQ(kHighScreenshareTl0Bps, bitrate_allocation.GetBitrate(1, 0));
EXPECT_EQ(kHighScreenshareTl1Bps - kHighScreenshareTl0Bps,
bitrate_allocation.GetBitrate(1, 1));
}
TEST_F(VideoCodecInitializerTest, SingleStreamMultiplexCodec) {
SetUpFor(VideoCodecType::kVideoCodecMultiplex, 1, 1, true);
streams_.push_back(DefaultStream());
EXPECT_TRUE(InitializeCodec());
}
TEST_F(VideoCodecInitializerTest, Vp9SvcDefaultLayering) {
SetUpFor(VideoCodecType::kVideoCodecVP9, 3, 3, false);
VideoStream stream = DefaultStream();
stream.num_temporal_layers = 3;
streams_.push_back(stream);
EXPECT_TRUE(InitializeCodec());
EXPECT_EQ(codec_out_.VP9()->numberOfSpatialLayers, 3u);
EXPECT_EQ(codec_out_.VP9()->numberOfTemporalLayers, 3u);
}
TEST_F(VideoCodecInitializerTest, Vp9SvcAdjustedLayering) {
SetUpFor(VideoCodecType::kVideoCodecVP9, 3, 3, false);
VideoStream stream = DefaultStream();
stream.num_temporal_layers = 3;
// Set resolution which is only enough to produce 2 spatial layers.
stream.width = kMinVp9SpatialLayerWidth * 2;
stream.height = kMinVp9SpatialLayerHeight * 2;
streams_.push_back(stream);
EXPECT_TRUE(InitializeCodec());
EXPECT_EQ(codec_out_.VP9()->numberOfSpatialLayers, 2u);
}
TEST_F(VideoCodecInitializerTest,
Vp9SingleSpatialLayerMaxBitrateIsEqualToCodecMaxBitrate) {
SetUpFor(VideoCodecType::kVideoCodecVP9, 1, 3, false);
VideoStream stream = DefaultStream();
stream.num_temporal_layers = 3;
streams_.push_back(stream);
EXPECT_TRUE(InitializeCodec());
EXPECT_EQ(codec_out_.spatialLayers[0].maxBitrate,
kDefaultMaxBitrateBps / 1000);
}
} // namespace webrtc