mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-19 00:27:51 +01:00

This CL changes the handling of saturated microphone signals in AEC3. Some of the changes included are -Make the detection of saturated echoes depend on the echo path gain estimate. -Remove redundant code related to echo saturation. -Correct the computation of residual echoes when the echo is saturated. -Soften the echo removal during echo saturation. Bug: webrtc:9119 Change-Id: I5cb11cd449de552ab670beeb24ed8112f8beb734 Reviewed-on: https://webrtc-review.googlesource.com/67220 Commit-Queue: Per Åhgren <peah@webrtc.org> Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org> Cr-Commit-Position: refs/heads/master@{#22809}
478 lines
18 KiB
C++
478 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/aec_state.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/atomicops.h"
|
|
#include "rtc_base/checks.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
float ComputeGainRampupIncrease(const EchoCanceller3Config& config) {
|
|
const auto& c = config.echo_removal_control.gain_rampup;
|
|
return powf(1.f / c.first_non_zero_gain, 1.f / c.non_zero_gain_blocks);
|
|
}
|
|
|
|
constexpr size_t kBlocksSinceConvergencedFilterInit = 10000;
|
|
constexpr size_t kBlocksSinceConsistentEstimateInit = 10000;
|
|
|
|
} // namespace
|
|
|
|
int AecState::instance_count_ = 0;
|
|
|
|
AecState::AecState(const EchoCanceller3Config& config)
|
|
: data_dumper_(
|
|
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
|
|
erle_estimator_(config.erle.min, config.erle.max_l, config.erle.max_h),
|
|
config_(config),
|
|
max_render_(config_.filter.main.length_blocks, 0.f),
|
|
reverb_decay_(fabsf(config_.ep_strength.default_len)),
|
|
gain_rampup_increase_(ComputeGainRampupIncrease(config_)),
|
|
suppression_gain_limiter_(config_),
|
|
filter_analyzer_(config_),
|
|
blocks_since_converged_filter_(kBlocksSinceConvergencedFilterInit),
|
|
active_blocks_since_consistent_filter_estimate_(
|
|
kBlocksSinceConsistentEstimateInit) {}
|
|
|
|
AecState::~AecState() = default;
|
|
|
|
void AecState::HandleEchoPathChange(
|
|
const EchoPathVariability& echo_path_variability) {
|
|
const auto full_reset = [&]() {
|
|
filter_analyzer_.Reset();
|
|
blocks_since_last_saturation_ = 0;
|
|
usable_linear_estimate_ = false;
|
|
capture_signal_saturation_ = false;
|
|
echo_saturation_ = false;
|
|
std::fill(max_render_.begin(), max_render_.end(), 0.f);
|
|
blocks_with_proper_filter_adaptation_ = 0;
|
|
blocks_since_reset_ = 0;
|
|
filter_has_had_time_to_converge_ = false;
|
|
render_received_ = false;
|
|
blocks_with_active_render_ = 0;
|
|
initial_state_ = true;
|
|
suppression_gain_limiter_.Reset();
|
|
blocks_since_converged_filter_ = kBlocksSinceConvergencedFilterInit;
|
|
diverged_blocks_ = 0;
|
|
};
|
|
|
|
// TODO(peah): Refine the reset scheme according to the type of gain and
|
|
// delay adjustment.
|
|
if (echo_path_variability.gain_change) {
|
|
full_reset();
|
|
}
|
|
|
|
if (echo_path_variability.delay_change !=
|
|
EchoPathVariability::DelayAdjustment::kBufferReadjustment) {
|
|
full_reset();
|
|
} else if (echo_path_variability.delay_change !=
|
|
EchoPathVariability::DelayAdjustment::kBufferFlush) {
|
|
full_reset();
|
|
} else if (echo_path_variability.delay_change !=
|
|
EchoPathVariability::DelayAdjustment::kDelayReset) {
|
|
full_reset();
|
|
} else if (echo_path_variability.delay_change !=
|
|
EchoPathVariability::DelayAdjustment::kNewDetectedDelay) {
|
|
full_reset();
|
|
} else if (echo_path_variability.gain_change) {
|
|
blocks_since_reset_ = kNumBlocksPerSecond;
|
|
}
|
|
}
|
|
|
|
void AecState::Update(
|
|
const rtc::Optional<DelayEstimate>& external_delay,
|
|
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
|
|
adaptive_filter_frequency_response,
|
|
const std::vector<float>& adaptive_filter_impulse_response,
|
|
bool converged_filter,
|
|
bool diverged_filter,
|
|
const RenderBuffer& render_buffer,
|
|
const std::array<float, kFftLengthBy2Plus1>& E2_main,
|
|
const std::array<float, kFftLengthBy2Plus1>& Y2,
|
|
const std::array<float, kBlockSize>& s) {
|
|
// Analyze the filter and compute the delays.
|
|
filter_analyzer_.Update(adaptive_filter_impulse_response, render_buffer);
|
|
filter_delay_blocks_ = filter_analyzer_.DelayBlocks();
|
|
|
|
if (filter_analyzer_.Consistent()) {
|
|
internal_delay_ = filter_analyzer_.DelayBlocks();
|
|
} else {
|
|
internal_delay_ = rtc::nullopt;
|
|
}
|
|
|
|
external_delay_seen_ = external_delay_seen_ || external_delay;
|
|
|
|
const std::vector<float>& x = render_buffer.Block(-filter_delay_blocks_)[0];
|
|
|
|
// Update counters.
|
|
++capture_block_counter_;
|
|
++blocks_since_reset_;
|
|
const bool active_render_block = DetectActiveRender(x);
|
|
blocks_with_active_render_ += active_render_block ? 1 : 0;
|
|
blocks_with_proper_filter_adaptation_ +=
|
|
active_render_block && !SaturatedCapture() ? 1 : 0;
|
|
|
|
// Update the limit on the echo suppression after an echo path change to avoid
|
|
// an initial echo burst.
|
|
suppression_gain_limiter_.Update(render_buffer.GetRenderActivity(),
|
|
transparent_mode_);
|
|
|
|
// Update the ERL and ERLE measures.
|
|
if (converged_filter && blocks_since_reset_ >= 2 * kNumBlocksPerSecond) {
|
|
const auto& X2 = render_buffer.Spectrum(filter_delay_blocks_);
|
|
erle_estimator_.Update(X2, Y2, E2_main);
|
|
erl_estimator_.Update(X2, Y2);
|
|
}
|
|
|
|
// Detect and flag echo saturation.
|
|
// TODO(peah): Add the delay in this computation to ensure that the render and
|
|
// capture signals are properly aligned.
|
|
if (config_.ep_strength.echo_can_saturate) {
|
|
echo_saturation_ = DetectEchoSaturation(x, EchoPathGain());
|
|
}
|
|
|
|
bool filter_has_had_time_to_converge =
|
|
blocks_with_proper_filter_adaptation_ >= 1.5f * kNumBlocksPerSecond;
|
|
|
|
if (!filter_should_have_converged_) {
|
|
filter_should_have_converged_ =
|
|
blocks_with_proper_filter_adaptation_ > 6 * kNumBlocksPerSecond;
|
|
}
|
|
|
|
// Flag whether the initial state is still active.
|
|
initial_state_ =
|
|
blocks_with_proper_filter_adaptation_ < 5 * kNumBlocksPerSecond;
|
|
|
|
// Update counters for the filter divergence and convergence.
|
|
diverged_blocks_ = diverged_filter ? diverged_blocks_ + 1 : 0;
|
|
if (diverged_blocks_ >= 60) {
|
|
blocks_since_converged_filter_ = kBlocksSinceConvergencedFilterInit;
|
|
} else {
|
|
blocks_since_converged_filter_ =
|
|
converged_filter ? 0 : blocks_since_converged_filter_ + 1;
|
|
}
|
|
if (converged_filter) {
|
|
active_blocks_since_converged_filter_ = 0;
|
|
} else if (active_render_block) {
|
|
++active_blocks_since_converged_filter_;
|
|
}
|
|
|
|
bool recently_converged_filter =
|
|
blocks_since_converged_filter_ < 60 * kNumBlocksPerSecond;
|
|
|
|
if (blocks_since_converged_filter_ > 20 * kNumBlocksPerSecond) {
|
|
converged_filter_count_ = 0;
|
|
} else if (converged_filter) {
|
|
++converged_filter_count_;
|
|
}
|
|
if (converged_filter_count_ > 50) {
|
|
finite_erl_ = true;
|
|
}
|
|
|
|
if (filter_analyzer_.Consistent() && filter_delay_blocks_ < 5) {
|
|
consistent_filter_seen_ = true;
|
|
active_blocks_since_consistent_filter_estimate_ = 0;
|
|
} else if (active_render_block) {
|
|
++active_blocks_since_consistent_filter_estimate_;
|
|
}
|
|
|
|
bool consistent_filter_estimate_not_seen;
|
|
if (!consistent_filter_seen_) {
|
|
consistent_filter_estimate_not_seen =
|
|
capture_block_counter_ > 5 * kNumBlocksPerSecond;
|
|
} else {
|
|
consistent_filter_estimate_not_seen =
|
|
active_blocks_since_consistent_filter_estimate_ >
|
|
30 * kNumBlocksPerSecond;
|
|
}
|
|
|
|
converged_filter_seen_ = converged_filter_seen_ || converged_filter;
|
|
|
|
// If no filter convergence is seen for a long time, reset the estimated
|
|
// properties of the echo path.
|
|
if (active_blocks_since_converged_filter_ > 60 * kNumBlocksPerSecond) {
|
|
converged_filter_seen_ = false;
|
|
finite_erl_ = false;
|
|
}
|
|
|
|
// After an amount of active render samples for which an echo should have been
|
|
// detected in the capture signal if the ERL was not infinite, flag that a
|
|
// transparent mode should be entered.
|
|
transparent_mode_ = !config_.ep_strength.bounded_erl && !finite_erl_;
|
|
transparent_mode_ =
|
|
transparent_mode_ &&
|
|
(consistent_filter_estimate_not_seen || !converged_filter_seen_);
|
|
transparent_mode_ = transparent_mode_ &&
|
|
(filter_should_have_converged_ ||
|
|
(!external_delay_seen_ &&
|
|
capture_block_counter_ > 10 * kNumBlocksPerSecond));
|
|
|
|
usable_linear_estimate_ = !echo_saturation_;
|
|
usable_linear_estimate_ =
|
|
usable_linear_estimate_ && filter_has_had_time_to_converge;
|
|
usable_linear_estimate_ =
|
|
usable_linear_estimate_ && recently_converged_filter;
|
|
usable_linear_estimate_ = usable_linear_estimate_ && !diverged_filter;
|
|
usable_linear_estimate_ = usable_linear_estimate_ && external_delay;
|
|
|
|
use_linear_filter_output_ = usable_linear_estimate_ && !TransparentMode();
|
|
|
|
data_dumper_->DumpRaw("aec3_erle", Erle());
|
|
data_dumper_->DumpRaw("aec3_erle_onset", erle_estimator_.ErleOnsets());
|
|
data_dumper_->DumpRaw("aec3_erl", Erl());
|
|
data_dumper_->DumpRaw("aec3_erle_time_domain", ErleTimeDomain());
|
|
data_dumper_->DumpRaw("aec3_erl_time_domain", ErlTimeDomain());
|
|
data_dumper_->DumpRaw("aec3_usable_linear_estimate", UsableLinearEstimate());
|
|
data_dumper_->DumpRaw("aec3_transparent_mode", transparent_mode_);
|
|
data_dumper_->DumpRaw("aec3_state_internal_delay",
|
|
internal_delay_ ? *internal_delay_ : -1);
|
|
data_dumper_->DumpRaw("aec3_filter_delay", filter_analyzer_.DelayBlocks());
|
|
|
|
data_dumper_->DumpRaw("aec3_consistent_filter",
|
|
filter_analyzer_.Consistent());
|
|
data_dumper_->DumpRaw("aec3_suppression_gain_limit", SuppressionGainLimit());
|
|
data_dumper_->DumpRaw("aec3_initial_state", InitialState());
|
|
data_dumper_->DumpRaw("aec3_capture_saturation", SaturatedCapture());
|
|
data_dumper_->DumpRaw("aec3_echo_saturation", echo_saturation_);
|
|
data_dumper_->DumpRaw("aec3_converged_filter", converged_filter);
|
|
data_dumper_->DumpRaw("aec3_diverged_filter", diverged_filter);
|
|
|
|
data_dumper_->DumpRaw("aec3_external_delay_avaliable",
|
|
external_delay ? 1 : 0);
|
|
data_dumper_->DumpRaw("aec3_consistent_filter_estimate_not_seen",
|
|
consistent_filter_estimate_not_seen);
|
|
data_dumper_->DumpRaw("aec3_filter_should_have_converged",
|
|
filter_should_have_converged_);
|
|
data_dumper_->DumpRaw("aec3_filter_has_had_time_to_converge",
|
|
filter_has_had_time_to_converge);
|
|
data_dumper_->DumpRaw("aec3_recently_converged_filter",
|
|
recently_converged_filter);
|
|
}
|
|
|
|
void AecState::UpdateReverb(const std::vector<float>& impulse_response) {
|
|
// Echo tail estimation enabled if the below variable is set as negative.
|
|
if (config_.ep_strength.default_len > 0.f) {
|
|
return;
|
|
}
|
|
|
|
if ((!(filter_delay_blocks_ && usable_linear_estimate_)) ||
|
|
(filter_delay_blocks_ >
|
|
static_cast<int>(config_.filter.main.length_blocks) - 4)) {
|
|
return;
|
|
}
|
|
|
|
constexpr float kOneByFftLengthBy2 = 1.f / kFftLengthBy2;
|
|
|
|
// Form the data to match against by squaring the impulse response
|
|
// coefficients.
|
|
std::array<float, GetTimeDomainLength(kMaxAdaptiveFilterLength)>
|
|
matching_data_data;
|
|
RTC_DCHECK_LE(GetTimeDomainLength(config_.filter.main.length_blocks),
|
|
matching_data_data.size());
|
|
rtc::ArrayView<float> matching_data(
|
|
matching_data_data.data(),
|
|
GetTimeDomainLength(config_.filter.main.length_blocks));
|
|
std::transform(impulse_response.begin(), impulse_response.end(),
|
|
matching_data.begin(), [](float a) { return a * a; });
|
|
|
|
if (current_reverb_decay_section_ < config_.filter.main.length_blocks) {
|
|
// Update accumulated variables for the current filter section.
|
|
|
|
const size_t start_index = current_reverb_decay_section_ * kFftLengthBy2;
|
|
|
|
RTC_DCHECK_GT(matching_data.size(), start_index);
|
|
RTC_DCHECK_GE(matching_data.size(), start_index + kFftLengthBy2);
|
|
float section_energy =
|
|
std::accumulate(matching_data.begin() + start_index,
|
|
matching_data.begin() + start_index + kFftLengthBy2,
|
|
0.f) *
|
|
kOneByFftLengthBy2;
|
|
|
|
section_energy = std::max(
|
|
section_energy, 1e-32f); // Regularization to avoid division by 0.
|
|
|
|
RTC_DCHECK_LT(current_reverb_decay_section_, block_energies_.size());
|
|
const float energy_ratio =
|
|
block_energies_[current_reverb_decay_section_] / section_energy;
|
|
|
|
main_filter_is_adapting_ = main_filter_is_adapting_ ||
|
|
(energy_ratio > 1.1f || energy_ratio < 0.9f);
|
|
|
|
// Count consecutive number of "good" filter sections, where "good" means:
|
|
// 1) energy is above noise floor.
|
|
// 2) energy of current section has not changed too much from last check.
|
|
if (!found_end_of_reverb_decay_ && section_energy > tail_energy_ &&
|
|
!main_filter_is_adapting_) {
|
|
++num_reverb_decay_sections_next_;
|
|
} else {
|
|
found_end_of_reverb_decay_ = true;
|
|
}
|
|
|
|
block_energies_[current_reverb_decay_section_] = section_energy;
|
|
|
|
if (num_reverb_decay_sections_ > 0) {
|
|
// Linear regression of log squared magnitude of impulse response.
|
|
for (size_t i = 0; i < kFftLengthBy2; i++) {
|
|
auto fast_approx_log2f = [](const float in) {
|
|
RTC_DCHECK_GT(in, .0f);
|
|
// Read and interpret float as uint32_t and then cast to float.
|
|
// This is done to extract the exponent (bits 30 - 23).
|
|
// "Right shift" of the exponent is then performed by multiplying
|
|
// with the constant (1/2^23). Finally, we subtract a constant to
|
|
// remove the bias (https://en.wikipedia.org/wiki/Exponent_bias).
|
|
union {
|
|
float dummy;
|
|
uint32_t a;
|
|
} x = {in};
|
|
float out = x.a;
|
|
out *= 1.1920929e-7f; // 1/2^23
|
|
out -= 126.942695f; // Remove bias.
|
|
return out;
|
|
};
|
|
RTC_DCHECK_GT(matching_data.size(), start_index + i);
|
|
float z = fast_approx_log2f(matching_data[start_index + i]);
|
|
accumulated_nz_ += accumulated_count_ * z;
|
|
++accumulated_count_;
|
|
}
|
|
}
|
|
|
|
num_reverb_decay_sections_ =
|
|
num_reverb_decay_sections_ > 0 ? num_reverb_decay_sections_ - 1 : 0;
|
|
++current_reverb_decay_section_;
|
|
|
|
} else {
|
|
constexpr float kMaxDecay = 0.95f; // ~1 sec min RT60.
|
|
constexpr float kMinDecay = 0.02f; // ~15 ms max RT60.
|
|
|
|
// Accumulated variables throughout whole filter.
|
|
|
|
// Solve for decay rate.
|
|
|
|
float decay = reverb_decay_;
|
|
|
|
if (accumulated_nn_ != 0.f) {
|
|
const float exp_candidate = -accumulated_nz_ / accumulated_nn_;
|
|
decay = powf(2.0f, -exp_candidate * kFftLengthBy2);
|
|
decay = std::min(decay, kMaxDecay);
|
|
decay = std::max(decay, kMinDecay);
|
|
}
|
|
|
|
// Filter tail energy (assumed to be noise).
|
|
|
|
constexpr size_t kTailLength = kFftLength;
|
|
constexpr float k1ByTailLength = 1.f / kTailLength;
|
|
const size_t tail_index =
|
|
GetTimeDomainLength(config_.filter.main.length_blocks) - kTailLength;
|
|
|
|
RTC_DCHECK_GT(matching_data.size(), tail_index);
|
|
tail_energy_ = std::accumulate(matching_data.begin() + tail_index,
|
|
matching_data.end(), 0.f) *
|
|
k1ByTailLength;
|
|
|
|
// Update length of decay.
|
|
num_reverb_decay_sections_ = num_reverb_decay_sections_next_;
|
|
num_reverb_decay_sections_next_ = 0;
|
|
// Must have enough data (number of sections) in order
|
|
// to estimate decay rate.
|
|
if (num_reverb_decay_sections_ < 5) {
|
|
num_reverb_decay_sections_ = 0;
|
|
}
|
|
|
|
const float N = num_reverb_decay_sections_ * kFftLengthBy2;
|
|
accumulated_nz_ = 0.f;
|
|
const float k1By12 = 1.f / 12.f;
|
|
// Arithmetic sum $2 \sum_{i=0}^{(N-1)/2}i^2$ calculated directly.
|
|
accumulated_nn_ = N * (N * N - 1.0f) * k1By12;
|
|
accumulated_count_ = -N * 0.5f;
|
|
// Linear regression approach assumes symmetric index around 0.
|
|
accumulated_count_ += 0.5f;
|
|
|
|
// Identify the peak index of the impulse response.
|
|
const size_t peak_index = std::distance(
|
|
matching_data.begin(),
|
|
std::max_element(matching_data.begin(), matching_data.end()));
|
|
|
|
current_reverb_decay_section_ = peak_index * kOneByFftLengthBy2 + 3;
|
|
// Make sure we're not out of bounds.
|
|
if (current_reverb_decay_section_ + 1 >=
|
|
config_.filter.main.length_blocks) {
|
|
current_reverb_decay_section_ = config_.filter.main.length_blocks;
|
|
}
|
|
size_t start_index = current_reverb_decay_section_ * kFftLengthBy2;
|
|
float first_section_energy =
|
|
std::accumulate(matching_data.begin() + start_index,
|
|
matching_data.begin() + start_index + kFftLengthBy2,
|
|
0.f) *
|
|
kOneByFftLengthBy2;
|
|
|
|
// To estimate the reverb decay, the energy of the first filter section
|
|
// must be substantially larger than the last.
|
|
// Also, the first filter section energy must not deviate too much
|
|
// from the max peak.
|
|
bool main_filter_has_reverb = first_section_energy > 4.f * tail_energy_;
|
|
bool main_filter_is_sane = first_section_energy > 2.f * tail_energy_ &&
|
|
matching_data[peak_index] < 100.f;
|
|
|
|
// Not detecting any decay, but tail is over noise - assume max decay.
|
|
if (num_reverb_decay_sections_ == 0 && main_filter_is_sane &&
|
|
main_filter_has_reverb) {
|
|
decay = kMaxDecay;
|
|
}
|
|
|
|
if (!main_filter_is_adapting_ && main_filter_is_sane &&
|
|
num_reverb_decay_sections_ > 0) {
|
|
decay = std::max(.97f * reverb_decay_, decay);
|
|
reverb_decay_ -= .1f * (reverb_decay_ - decay);
|
|
}
|
|
|
|
found_end_of_reverb_decay_ =
|
|
!(main_filter_is_sane && main_filter_has_reverb);
|
|
main_filter_is_adapting_ = false;
|
|
}
|
|
|
|
data_dumper_->DumpRaw("aec3_reverb_decay", reverb_decay_);
|
|
data_dumper_->DumpRaw("aec3_reverb_tail_energy", tail_energy_);
|
|
data_dumper_->DumpRaw("aec3_suppression_gain_limit", SuppressionGainLimit());
|
|
}
|
|
|
|
bool AecState::DetectActiveRender(rtc::ArrayView<const float> x) const {
|
|
const float x_energy = std::inner_product(x.begin(), x.end(), x.begin(), 0.f);
|
|
return x_energy > (config_.render_levels.active_render_limit *
|
|
config_.render_levels.active_render_limit) *
|
|
kFftLengthBy2;
|
|
}
|
|
|
|
bool AecState::DetectEchoSaturation(rtc::ArrayView<const float> x,
|
|
float echo_path_gain) {
|
|
RTC_DCHECK_LT(0, x.size());
|
|
const float max_sample = fabs(*std::max_element(
|
|
x.begin(), x.end(), [](float a, float b) { return a * a < b * b; }));
|
|
|
|
// Set flag for potential presence of saturated echo
|
|
const float kMargin = 10.f;
|
|
float peak_echo_amplitude = max_sample * echo_path_gain * kMargin;
|
|
if (SaturatedCapture() && peak_echo_amplitude > 32000) {
|
|
blocks_since_last_saturation_ = 0;
|
|
} else {
|
|
++blocks_since_last_saturation_;
|
|
}
|
|
|
|
return blocks_since_last_saturation_ < 5;
|
|
}
|
|
|
|
} // namespace webrtc
|