mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 22:30:40 +01:00

WebRTC is now using C++14 so there is no need to use the Abseil version of std::make_unique. This CL has been created with the following steps: git grep -l absl::make_unique | sort | uniq > /tmp/make_unique.txt git grep -l absl::WrapUnique | sort | uniq > /tmp/wrap_unique.txt git grep -l "#include <memory>" | sort | uniq > /tmp/memory.txt diff --new-line-format="" --unchanged-line-format="" \ /tmp/make_unique.txt /tmp/wrap_unique.txt | sort | \ uniq > /tmp/only_make_unique.txt diff --new-line-format="" --unchanged-line-format="" \ /tmp/only_make_unique.txt /tmp/memory.txt | \ xargs grep -l "absl/memory" > /tmp/add-memory.txt git grep -l "\babsl::make_unique\b" | \ xargs sed -i "s/\babsl::make_unique\b/std::make_unique/g" git checkout PRESUBMIT.py abseil-in-webrtc.md cat /tmp/add-memory.txt | \ xargs sed -i \ 's/#include "absl\/memory\/memory.h"/#include <memory>/g' git cl format # Manual fix order of the new inserted #include <memory> cat /tmp/only_make_unique | xargs grep -l "#include <memory>" | \ xargs sed -i '/#include "absl\/memory\/memory.h"/d' git ls-files | grep BUILD.gn | \ xargs sed -i '/\/\/third_party\/abseil-cpp\/absl\/memory/d' python tools_webrtc/gn_check_autofix.py \ -m tryserver.webrtc -b linux_rel # Repead the gn_check_autofix step for other platforms git ls-files | grep BUILD.gn | \ xargs sed -i 's/absl\/memory:memory/absl\/memory/g' git cl format Bug: webrtc:10945 Change-Id: I3fe28ea80f4dd3ba3cf28effd151d5e1f19aff89 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/153221 Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org> Reviewed-by: Alessio Bazzica <alessiob@webrtc.org> Reviewed-by: Karl Wiberg <kwiberg@webrtc.org> Cr-Commit-Position: refs/heads/master@{#29209}
592 lines
24 KiB
C++
592 lines
24 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/video_coding/codecs/test/videoprocessor.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
#include "api/scoped_refptr.h"
|
|
#include "api/video/builtin_video_bitrate_allocator_factory.h"
|
|
#include "api/video/i420_buffer.h"
|
|
#include "api/video/video_bitrate_allocator_factory.h"
|
|
#include "api/video/video_frame_buffer.h"
|
|
#include "api/video/video_rotation.h"
|
|
#include "api/video_codecs/video_codec.h"
|
|
#include "api/video_codecs/video_encoder.h"
|
|
#include "common_video/h264/h264_common.h"
|
|
#include "common_video/libyuv/include/webrtc_libyuv.h"
|
|
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
|
|
#include "modules/video_coding/codecs/interface/common_constants.h"
|
|
#include "modules/video_coding/include/video_error_codes.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/task_utils/to_queued_task.h"
|
|
#include "rtc_base/time_utils.h"
|
|
#include "test/gtest.h"
|
|
#include "third_party/libyuv/include/libyuv/compare.h"
|
|
#include "third_party/libyuv/include/libyuv/scale.h"
|
|
|
|
namespace webrtc {
|
|
namespace test {
|
|
|
|
using FrameStatistics = VideoCodecTestStats::FrameStatistics;
|
|
|
|
namespace {
|
|
const int kMsToRtpTimestamp = kVideoPayloadTypeFrequency / 1000;
|
|
const int kMaxBufferedInputFrames = 20;
|
|
|
|
const VideoEncoder::Capabilities kCapabilities(false);
|
|
|
|
size_t GetMaxNaluSizeBytes(const EncodedImage& encoded_frame,
|
|
const VideoCodecTestFixture::Config& config) {
|
|
if (config.codec_settings.codecType != kVideoCodecH264)
|
|
return 0;
|
|
|
|
std::vector<webrtc::H264::NaluIndex> nalu_indices =
|
|
webrtc::H264::FindNaluIndices(encoded_frame.data(), encoded_frame.size());
|
|
|
|
RTC_CHECK(!nalu_indices.empty());
|
|
|
|
size_t max_size = 0;
|
|
for (const webrtc::H264::NaluIndex& index : nalu_indices)
|
|
max_size = std::max(max_size, index.payload_size);
|
|
|
|
return max_size;
|
|
}
|
|
|
|
size_t GetTemporalLayerIndex(const CodecSpecificInfo& codec_specific) {
|
|
size_t temporal_idx = 0;
|
|
if (codec_specific.codecType == kVideoCodecVP8) {
|
|
temporal_idx = codec_specific.codecSpecific.VP8.temporalIdx;
|
|
} else if (codec_specific.codecType == kVideoCodecVP9) {
|
|
temporal_idx = codec_specific.codecSpecific.VP9.temporal_idx;
|
|
}
|
|
if (temporal_idx == kNoTemporalIdx) {
|
|
temporal_idx = 0;
|
|
}
|
|
return temporal_idx;
|
|
}
|
|
|
|
int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) {
|
|
int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec;
|
|
RTC_DCHECK_GE(diff_us, std::numeric_limits<int>::min());
|
|
RTC_DCHECK_LE(diff_us, std::numeric_limits<int>::max());
|
|
return static_cast<int>(diff_us);
|
|
}
|
|
|
|
void ExtractI420BufferWithSize(const VideoFrame& image,
|
|
int width,
|
|
int height,
|
|
rtc::Buffer* buffer) {
|
|
if (image.width() != width || image.height() != height) {
|
|
EXPECT_DOUBLE_EQ(static_cast<double>(width) / height,
|
|
static_cast<double>(image.width()) / image.height());
|
|
// Same aspect ratio, no cropping needed.
|
|
rtc::scoped_refptr<I420Buffer> scaled(I420Buffer::Create(width, height));
|
|
scaled->ScaleFrom(*image.video_frame_buffer()->ToI420());
|
|
|
|
size_t length =
|
|
CalcBufferSize(VideoType::kI420, scaled->width(), scaled->height());
|
|
buffer->SetSize(length);
|
|
RTC_CHECK_NE(ExtractBuffer(scaled, length, buffer->data()), -1);
|
|
return;
|
|
}
|
|
|
|
// No resize.
|
|
size_t length =
|
|
CalcBufferSize(VideoType::kI420, image.width(), image.height());
|
|
buffer->SetSize(length);
|
|
RTC_CHECK_NE(ExtractBuffer(image, length, buffer->data()), -1);
|
|
}
|
|
|
|
void CalculateFrameQuality(const I420BufferInterface& ref_buffer,
|
|
const I420BufferInterface& dec_buffer,
|
|
FrameStatistics* frame_stat,
|
|
bool calc_ssim) {
|
|
if (ref_buffer.width() != dec_buffer.width() ||
|
|
ref_buffer.height() != dec_buffer.height()) {
|
|
RTC_CHECK_GE(ref_buffer.width(), dec_buffer.width());
|
|
RTC_CHECK_GE(ref_buffer.height(), dec_buffer.height());
|
|
// Downscale reference frame.
|
|
rtc::scoped_refptr<I420Buffer> scaled_buffer =
|
|
I420Buffer::Create(dec_buffer.width(), dec_buffer.height());
|
|
I420Scale(ref_buffer.DataY(), ref_buffer.StrideY(), ref_buffer.DataU(),
|
|
ref_buffer.StrideU(), ref_buffer.DataV(), ref_buffer.StrideV(),
|
|
ref_buffer.width(), ref_buffer.height(),
|
|
scaled_buffer->MutableDataY(), scaled_buffer->StrideY(),
|
|
scaled_buffer->MutableDataU(), scaled_buffer->StrideU(),
|
|
scaled_buffer->MutableDataV(), scaled_buffer->StrideV(),
|
|
scaled_buffer->width(), scaled_buffer->height(),
|
|
libyuv::kFilterBox);
|
|
|
|
CalculateFrameQuality(*scaled_buffer, dec_buffer, frame_stat, calc_ssim);
|
|
} else {
|
|
const uint64_t sse_y = libyuv::ComputeSumSquareErrorPlane(
|
|
dec_buffer.DataY(), dec_buffer.StrideY(), ref_buffer.DataY(),
|
|
ref_buffer.StrideY(), dec_buffer.width(), dec_buffer.height());
|
|
|
|
const uint64_t sse_u = libyuv::ComputeSumSquareErrorPlane(
|
|
dec_buffer.DataU(), dec_buffer.StrideU(), ref_buffer.DataU(),
|
|
ref_buffer.StrideU(), dec_buffer.width() / 2, dec_buffer.height() / 2);
|
|
|
|
const uint64_t sse_v = libyuv::ComputeSumSquareErrorPlane(
|
|
dec_buffer.DataV(), dec_buffer.StrideV(), ref_buffer.DataV(),
|
|
ref_buffer.StrideV(), dec_buffer.width() / 2, dec_buffer.height() / 2);
|
|
|
|
const size_t num_y_samples = dec_buffer.width() * dec_buffer.height();
|
|
const size_t num_u_samples =
|
|
dec_buffer.width() / 2 * dec_buffer.height() / 2;
|
|
|
|
frame_stat->psnr_y = libyuv::SumSquareErrorToPsnr(sse_y, num_y_samples);
|
|
frame_stat->psnr_u = libyuv::SumSquareErrorToPsnr(sse_u, num_u_samples);
|
|
frame_stat->psnr_v = libyuv::SumSquareErrorToPsnr(sse_v, num_u_samples);
|
|
frame_stat->psnr = libyuv::SumSquareErrorToPsnr(
|
|
sse_y + sse_u + sse_v, num_y_samples + 2 * num_u_samples);
|
|
|
|
if (calc_ssim) {
|
|
frame_stat->ssim = I420SSIM(ref_buffer, dec_buffer);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder,
|
|
VideoDecoderList* decoders,
|
|
FrameReader* input_frame_reader,
|
|
const VideoCodecTestFixture::Config& config,
|
|
VideoCodecTestStatsImpl* stats,
|
|
IvfFileWriterMap* encoded_frame_writers,
|
|
FrameWriterList* decoded_frame_writers)
|
|
: config_(config),
|
|
num_simulcast_or_spatial_layers_(
|
|
std::max(config_.NumberOfSimulcastStreams(),
|
|
config_.NumberOfSpatialLayers())),
|
|
stats_(stats),
|
|
encoder_(encoder),
|
|
decoders_(decoders),
|
|
bitrate_allocator_(
|
|
CreateBuiltinVideoBitrateAllocatorFactory()
|
|
->CreateVideoBitrateAllocator(config_.codec_settings)),
|
|
framerate_fps_(0),
|
|
encode_callback_(this),
|
|
input_frame_reader_(input_frame_reader),
|
|
merged_encoded_frames_(num_simulcast_or_spatial_layers_),
|
|
encoded_frame_writers_(encoded_frame_writers),
|
|
decoded_frame_writers_(decoded_frame_writers),
|
|
last_inputed_frame_num_(0),
|
|
last_inputed_timestamp_(0),
|
|
first_encoded_frame_(num_simulcast_or_spatial_layers_, true),
|
|
last_encoded_frame_num_(num_simulcast_or_spatial_layers_),
|
|
first_decoded_frame_(num_simulcast_or_spatial_layers_, true),
|
|
last_decoded_frame_num_(num_simulcast_or_spatial_layers_),
|
|
decoded_frame_buffer_(num_simulcast_or_spatial_layers_),
|
|
post_encode_time_ns_(0) {
|
|
// Sanity checks.
|
|
RTC_CHECK(TaskQueueBase::Current())
|
|
<< "VideoProcessor must be run on a task queue.";
|
|
RTC_CHECK(stats_);
|
|
RTC_CHECK(encoder_);
|
|
RTC_CHECK(decoders_);
|
|
RTC_CHECK_EQ(decoders_->size(), num_simulcast_or_spatial_layers_);
|
|
RTC_CHECK(input_frame_reader_);
|
|
RTC_CHECK(encoded_frame_writers_);
|
|
RTC_CHECK(!decoded_frame_writers ||
|
|
decoded_frame_writers->size() == num_simulcast_or_spatial_layers_);
|
|
|
|
// Setup required callbacks for the encoder and decoder and initialize them.
|
|
RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_),
|
|
WEBRTC_VIDEO_CODEC_OK);
|
|
|
|
// Initialize codecs so that they are ready to receive frames.
|
|
RTC_CHECK_EQ(encoder_->InitEncode(
|
|
&config_.codec_settings,
|
|
VideoEncoder::Settings(
|
|
kCapabilities, static_cast<int>(config_.NumberOfCores()),
|
|
config_.max_payload_size_bytes)),
|
|
WEBRTC_VIDEO_CODEC_OK);
|
|
|
|
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
|
|
decode_callback_.push_back(
|
|
std::make_unique<VideoProcessorDecodeCompleteCallback>(this, i));
|
|
RTC_CHECK_EQ(
|
|
decoders_->at(i)->InitDecode(&config_.codec_settings,
|
|
static_cast<int>(config_.NumberOfCores())),
|
|
WEBRTC_VIDEO_CODEC_OK);
|
|
RTC_CHECK_EQ(decoders_->at(i)->RegisterDecodeCompleteCallback(
|
|
decode_callback_.at(i).get()),
|
|
WEBRTC_VIDEO_CODEC_OK);
|
|
}
|
|
}
|
|
|
|
VideoProcessor::~VideoProcessor() {
|
|
RTC_DCHECK_RUN_ON(&sequence_checker_);
|
|
|
|
// Explicitly reset codecs, in case they don't do that themselves when they
|
|
// go out of scope.
|
|
RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK);
|
|
encoder_->RegisterEncodeCompleteCallback(nullptr);
|
|
for (auto& decoder : *decoders_) {
|
|
RTC_CHECK_EQ(decoder->Release(), WEBRTC_VIDEO_CODEC_OK);
|
|
decoder->RegisterDecodeCompleteCallback(nullptr);
|
|
}
|
|
|
|
// Sanity check.
|
|
RTC_CHECK_LE(input_frames_.size(), kMaxBufferedInputFrames);
|
|
}
|
|
|
|
void VideoProcessor::ProcessFrame() {
|
|
RTC_DCHECK_RUN_ON(&sequence_checker_);
|
|
const size_t frame_number = last_inputed_frame_num_++;
|
|
|
|
// Get input frame and store for future quality calculation.
|
|
rtc::scoped_refptr<I420BufferInterface> buffer =
|
|
input_frame_reader_->ReadFrame();
|
|
RTC_CHECK(buffer) << "Tried to read too many frames from the file.";
|
|
const size_t timestamp =
|
|
last_inputed_timestamp_ +
|
|
static_cast<size_t>(kVideoPayloadTypeFrequency / framerate_fps_);
|
|
VideoFrame input_frame =
|
|
VideoFrame::Builder()
|
|
.set_video_frame_buffer(buffer)
|
|
.set_timestamp_rtp(static_cast<uint32_t>(timestamp))
|
|
.set_timestamp_ms(static_cast<int64_t>(timestamp / kMsToRtpTimestamp))
|
|
.set_rotation(webrtc::kVideoRotation_0)
|
|
.build();
|
|
// Store input frame as a reference for quality calculations.
|
|
if (config_.decode && !config_.measure_cpu) {
|
|
if (input_frames_.size() == kMaxBufferedInputFrames) {
|
|
input_frames_.erase(input_frames_.begin());
|
|
}
|
|
input_frames_.emplace(frame_number, input_frame);
|
|
}
|
|
last_inputed_timestamp_ = timestamp;
|
|
|
|
post_encode_time_ns_ = 0;
|
|
|
|
// Create frame statistics object for all simulcast/spatial layers.
|
|
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
|
|
FrameStatistics frame_stat(frame_number, timestamp, i);
|
|
stats_->AddFrame(frame_stat);
|
|
}
|
|
|
|
// For the highest measurement accuracy of the encode time, the start/stop
|
|
// time recordings should wrap the Encode call as tightly as possible.
|
|
const int64_t encode_start_ns = rtc::TimeNanos();
|
|
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
|
|
FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i);
|
|
frame_stat->encode_start_ns = encode_start_ns;
|
|
}
|
|
|
|
// Encode.
|
|
const std::vector<VideoFrameType> frame_types =
|
|
(frame_number == 0)
|
|
? std::vector<VideoFrameType>{VideoFrameType::kVideoFrameKey}
|
|
: std::vector<VideoFrameType>{VideoFrameType::kVideoFrameDelta};
|
|
const int encode_return_code = encoder_->Encode(input_frame, &frame_types);
|
|
for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
|
|
FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i);
|
|
frame_stat->encode_return_code = encode_return_code;
|
|
}
|
|
}
|
|
|
|
void VideoProcessor::SetRates(size_t bitrate_kbps, double framerate_fps) {
|
|
RTC_DCHECK_RUN_ON(&sequence_checker_);
|
|
framerate_fps_ = framerate_fps;
|
|
bitrate_allocation_ =
|
|
bitrate_allocator_->Allocate(VideoBitrateAllocationParameters(
|
|
static_cast<uint32_t>(bitrate_kbps * 1000), framerate_fps_));
|
|
encoder_->SetRates(
|
|
VideoEncoder::RateControlParameters(bitrate_allocation_, framerate_fps_));
|
|
}
|
|
|
|
int32_t VideoProcessor::VideoProcessorDecodeCompleteCallback::Decoded(
|
|
VideoFrame& image) {
|
|
// Post the callback to the right task queue, if needed.
|
|
if (!task_queue_->IsCurrent()) {
|
|
// There might be a limited amount of output buffers, make a copy to make
|
|
// sure we don't block the decoder.
|
|
VideoFrame copy = VideoFrame::Builder()
|
|
.set_video_frame_buffer(I420Buffer::Copy(
|
|
*image.video_frame_buffer()->ToI420()))
|
|
.set_rotation(image.rotation())
|
|
.set_timestamp_us(image.timestamp_us())
|
|
.set_id(image.id())
|
|
.build();
|
|
copy.set_timestamp(image.timestamp());
|
|
|
|
task_queue_->PostTask(ToQueuedTask([this, copy]() {
|
|
video_processor_->FrameDecoded(copy, simulcast_svc_idx_);
|
|
}));
|
|
return 0;
|
|
}
|
|
video_processor_->FrameDecoded(image, simulcast_svc_idx_);
|
|
return 0;
|
|
}
|
|
|
|
void VideoProcessor::FrameEncoded(
|
|
const webrtc::EncodedImage& encoded_image,
|
|
const webrtc::CodecSpecificInfo& codec_specific) {
|
|
RTC_DCHECK_RUN_ON(&sequence_checker_);
|
|
|
|
// For the highest measurement accuracy of the encode time, the start/stop
|
|
// time recordings should wrap the Encode call as tightly as possible.
|
|
const int64_t encode_stop_ns = rtc::TimeNanos();
|
|
|
|
const VideoCodecType codec_type = codec_specific.codecType;
|
|
if (config_.encoded_frame_checker) {
|
|
config_.encoded_frame_checker->CheckEncodedFrame(codec_type, encoded_image);
|
|
}
|
|
|
|
// Layer metadata.
|
|
size_t spatial_idx = encoded_image.SpatialIndex().value_or(0);
|
|
size_t temporal_idx = GetTemporalLayerIndex(codec_specific);
|
|
|
|
FrameStatistics* frame_stat =
|
|
stats_->GetFrameWithTimestamp(encoded_image.Timestamp(), spatial_idx);
|
|
const size_t frame_number = frame_stat->frame_number;
|
|
|
|
// Ensure that the encode order is monotonically increasing, within this
|
|
// simulcast/spatial layer.
|
|
RTC_CHECK(first_encoded_frame_[spatial_idx] ||
|
|
last_encoded_frame_num_[spatial_idx] < frame_number);
|
|
|
|
// Ensure SVC spatial layers are delivered in ascending order.
|
|
const size_t num_spatial_layers = config_.NumberOfSpatialLayers();
|
|
if (!first_encoded_frame_[spatial_idx] && num_spatial_layers > 1) {
|
|
for (size_t i = 0; i < spatial_idx; ++i) {
|
|
RTC_CHECK_LE(last_encoded_frame_num_[i], frame_number);
|
|
}
|
|
for (size_t i = spatial_idx + 1; i < num_simulcast_or_spatial_layers_;
|
|
++i) {
|
|
RTC_CHECK_GT(frame_number, last_encoded_frame_num_[i]);
|
|
}
|
|
}
|
|
first_encoded_frame_[spatial_idx] = false;
|
|
last_encoded_frame_num_[spatial_idx] = frame_number;
|
|
|
|
// Update frame statistics.
|
|
frame_stat->encoding_successful = true;
|
|
frame_stat->encode_time_us = GetElapsedTimeMicroseconds(
|
|
frame_stat->encode_start_ns, encode_stop_ns - post_encode_time_ns_);
|
|
frame_stat->target_bitrate_kbps =
|
|
bitrate_allocation_.GetTemporalLayerSum(spatial_idx, temporal_idx) / 1000;
|
|
frame_stat->target_framerate_fps = framerate_fps_;
|
|
frame_stat->length_bytes = encoded_image.size();
|
|
frame_stat->frame_type = encoded_image._frameType;
|
|
frame_stat->temporal_idx = temporal_idx;
|
|
frame_stat->max_nalu_size_bytes = GetMaxNaluSizeBytes(encoded_image, config_);
|
|
frame_stat->qp = encoded_image.qp_;
|
|
|
|
bool end_of_picture = false;
|
|
if (codec_type == kVideoCodecVP9) {
|
|
const CodecSpecificInfoVP9& vp9_info = codec_specific.codecSpecific.VP9;
|
|
frame_stat->inter_layer_predicted = vp9_info.inter_layer_predicted;
|
|
frame_stat->non_ref_for_inter_layer_pred =
|
|
vp9_info.non_ref_for_inter_layer_pred;
|
|
end_of_picture = vp9_info.end_of_picture;
|
|
} else {
|
|
frame_stat->inter_layer_predicted = false;
|
|
frame_stat->non_ref_for_inter_layer_pred = true;
|
|
}
|
|
|
|
const webrtc::EncodedImage* encoded_image_for_decode = &encoded_image;
|
|
if (config_.decode || !encoded_frame_writers_->empty()) {
|
|
if (num_spatial_layers > 1) {
|
|
encoded_image_for_decode = BuildAndStoreSuperframe(
|
|
encoded_image, codec_type, frame_number, spatial_idx,
|
|
frame_stat->inter_layer_predicted);
|
|
}
|
|
}
|
|
|
|
if (config_.decode) {
|
|
DecodeFrame(*encoded_image_for_decode, spatial_idx);
|
|
|
|
if (end_of_picture && num_spatial_layers > 1) {
|
|
// If inter-layer prediction is enabled and upper layer was dropped then
|
|
// base layer should be passed to upper layer decoder. Otherwise decoder
|
|
// won't be able to decode next superframe.
|
|
const EncodedImage* base_image = nullptr;
|
|
const FrameStatistics* base_stat = nullptr;
|
|
for (size_t i = 0; i < num_spatial_layers; ++i) {
|
|
const bool layer_dropped = (first_decoded_frame_[i] ||
|
|
last_decoded_frame_num_[i] < frame_number);
|
|
|
|
// Ensure current layer was decoded.
|
|
RTC_CHECK(layer_dropped == false || i != spatial_idx);
|
|
|
|
if (!layer_dropped) {
|
|
base_image = &merged_encoded_frames_[i];
|
|
base_stat =
|
|
stats_->GetFrameWithTimestamp(encoded_image.Timestamp(), i);
|
|
} else if (base_image && !base_stat->non_ref_for_inter_layer_pred) {
|
|
DecodeFrame(*base_image, i);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
frame_stat->decode_return_code = WEBRTC_VIDEO_CODEC_NO_OUTPUT;
|
|
}
|
|
|
|
// Since frames in higher TLs typically depend on frames in lower TLs,
|
|
// write out frames in lower TLs to bitstream dumps of higher TLs.
|
|
for (size_t write_temporal_idx = temporal_idx;
|
|
write_temporal_idx < config_.NumberOfTemporalLayers();
|
|
++write_temporal_idx) {
|
|
const VideoProcessor::LayerKey layer_key(spatial_idx, write_temporal_idx);
|
|
auto it = encoded_frame_writers_->find(layer_key);
|
|
if (it != encoded_frame_writers_->cend()) {
|
|
RTC_CHECK(it->second->WriteFrame(*encoded_image_for_decode,
|
|
config_.codec_settings.codecType));
|
|
}
|
|
}
|
|
|
|
if (!config_.encode_in_real_time) {
|
|
// To get pure encode time for next layers, measure time spent in encode
|
|
// callback and subtract it from encode time of next layers.
|
|
post_encode_time_ns_ += rtc::TimeNanos() - encode_stop_ns;
|
|
}
|
|
}
|
|
|
|
void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame,
|
|
size_t spatial_idx) {
|
|
RTC_DCHECK_RUN_ON(&sequence_checker_);
|
|
|
|
// For the highest measurement accuracy of the decode time, the start/stop
|
|
// time recordings should wrap the Decode call as tightly as possible.
|
|
const int64_t decode_stop_ns = rtc::TimeNanos();
|
|
|
|
FrameStatistics* frame_stat =
|
|
stats_->GetFrameWithTimestamp(decoded_frame.timestamp(), spatial_idx);
|
|
const size_t frame_number = frame_stat->frame_number;
|
|
|
|
if (decoded_frame_writers_ && !first_decoded_frame_[spatial_idx]) {
|
|
// Fill drops with last decoded frame to make them look like freeze at
|
|
// playback and to keep decoded layers in sync.
|
|
for (size_t i = last_decoded_frame_num_[spatial_idx] + 1; i < frame_number;
|
|
++i) {
|
|
RTC_CHECK(decoded_frame_writers_->at(spatial_idx)
|
|
->WriteFrame(decoded_frame_buffer_[spatial_idx].data()));
|
|
}
|
|
}
|
|
|
|
// Ensure that the decode order is monotonically increasing, within this
|
|
// simulcast/spatial layer.
|
|
RTC_CHECK(first_decoded_frame_[spatial_idx] ||
|
|
last_decoded_frame_num_[spatial_idx] < frame_number);
|
|
first_decoded_frame_[spatial_idx] = false;
|
|
last_decoded_frame_num_[spatial_idx] = frame_number;
|
|
|
|
// Update frame statistics.
|
|
frame_stat->decoding_successful = true;
|
|
frame_stat->decode_time_us =
|
|
GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns);
|
|
frame_stat->decoded_width = decoded_frame.width();
|
|
frame_stat->decoded_height = decoded_frame.height();
|
|
|
|
// Skip quality metrics calculation to not affect CPU usage.
|
|
if (!config_.measure_cpu) {
|
|
const auto reference_frame = input_frames_.find(frame_number);
|
|
RTC_CHECK(reference_frame != input_frames_.cend())
|
|
<< "The codecs are either buffering too much, dropping too much, or "
|
|
"being too slow relative the input frame rate.";
|
|
|
|
// SSIM calculation is not optimized. Skip it in real-time mode.
|
|
const bool calc_ssim = !config_.encode_in_real_time;
|
|
CalculateFrameQuality(
|
|
*reference_frame->second.video_frame_buffer()->ToI420(),
|
|
*decoded_frame.video_frame_buffer()->ToI420(), frame_stat, calc_ssim);
|
|
|
|
// Erase all buffered input frames that we have moved past for all
|
|
// simulcast/spatial layers. Never buffer more than
|
|
// |kMaxBufferedInputFrames| frames, to protect against long runs of
|
|
// consecutive frame drops for a particular layer.
|
|
const auto min_last_decoded_frame_num = std::min_element(
|
|
last_decoded_frame_num_.cbegin(), last_decoded_frame_num_.cend());
|
|
const size_t min_buffered_frame_num = std::max(
|
|
0, static_cast<int>(frame_number) - kMaxBufferedInputFrames + 1);
|
|
RTC_CHECK(min_last_decoded_frame_num != last_decoded_frame_num_.cend());
|
|
const auto input_frames_erase_before = input_frames_.lower_bound(
|
|
std::max(*min_last_decoded_frame_num, min_buffered_frame_num));
|
|
input_frames_.erase(input_frames_.cbegin(), input_frames_erase_before);
|
|
}
|
|
|
|
if (decoded_frame_writers_) {
|
|
ExtractI420BufferWithSize(decoded_frame, config_.codec_settings.width,
|
|
config_.codec_settings.height,
|
|
&decoded_frame_buffer_[spatial_idx]);
|
|
RTC_CHECK_EQ(decoded_frame_buffer_[spatial_idx].size(),
|
|
decoded_frame_writers_->at(spatial_idx)->FrameLength());
|
|
RTC_CHECK(decoded_frame_writers_->at(spatial_idx)
|
|
->WriteFrame(decoded_frame_buffer_[spatial_idx].data()));
|
|
}
|
|
}
|
|
|
|
void VideoProcessor::DecodeFrame(const EncodedImage& encoded_image,
|
|
size_t spatial_idx) {
|
|
RTC_DCHECK_RUN_ON(&sequence_checker_);
|
|
FrameStatistics* frame_stat =
|
|
stats_->GetFrameWithTimestamp(encoded_image.Timestamp(), spatial_idx);
|
|
|
|
frame_stat->decode_start_ns = rtc::TimeNanos();
|
|
frame_stat->decode_return_code =
|
|
decoders_->at(spatial_idx)->Decode(encoded_image, false, 0);
|
|
}
|
|
|
|
const webrtc::EncodedImage* VideoProcessor::BuildAndStoreSuperframe(
|
|
const EncodedImage& encoded_image,
|
|
const VideoCodecType codec,
|
|
size_t frame_number,
|
|
size_t spatial_idx,
|
|
bool inter_layer_predicted) {
|
|
// Should only be called for SVC.
|
|
RTC_CHECK_GT(config_.NumberOfSpatialLayers(), 1);
|
|
|
|
EncodedImage base_image;
|
|
RTC_CHECK_EQ(base_image.size(), 0);
|
|
|
|
// Each SVC layer is decoded with dedicated decoder. Find the nearest
|
|
// non-dropped base frame and merge it and current frame into superframe.
|
|
if (inter_layer_predicted) {
|
|
for (int base_idx = static_cast<int>(spatial_idx) - 1; base_idx >= 0;
|
|
--base_idx) {
|
|
EncodedImage lower_layer = merged_encoded_frames_.at(base_idx);
|
|
if (lower_layer.Timestamp() == encoded_image.Timestamp()) {
|
|
base_image = lower_layer;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
const size_t payload_size_bytes = base_image.size() + encoded_image.size();
|
|
|
|
EncodedImage copied_image = encoded_image;
|
|
copied_image.SetEncodedData(EncodedImageBuffer::Create(payload_size_bytes));
|
|
if (base_image.size()) {
|
|
RTC_CHECK(base_image.data());
|
|
memcpy(copied_image.data(), base_image.data(), base_image.size());
|
|
}
|
|
memcpy(copied_image.data() + base_image.size(), encoded_image.data(),
|
|
encoded_image.size());
|
|
|
|
copied_image.set_size(payload_size_bytes);
|
|
|
|
// Replace previous EncodedImage for this spatial layer.
|
|
merged_encoded_frames_.at(spatial_idx) = std::move(copied_image);
|
|
|
|
return &merged_encoded_frames_.at(spatial_idx);
|
|
}
|
|
|
|
} // namespace test
|
|
} // namespace webrtc
|