webrtc/modules/audio_processing/aec3/erle_estimator_unittest.cc
Gustaf Ullberg e47433f017 AEC3: Remove legacy render buffering
This CL removes the legacy, no longer used, render buffering code. It
also removes four unused parameters from the AEC3 config. The change
is tested for bit-exactness.

Bug: webrtc:8671
Change-Id: I2bb6cb7a1097863f228767d757d551c00593bb00
Reviewed-on: https://webrtc-review.googlesource.com/c/119701
Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org>
Reviewed-by: Per Åhgren <peah@webrtc.org>
Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#26399}
2019-01-25 08:31:12 +00:00

201 lines
8.1 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cmath>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/erle_estimator.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/aec3/vector_buffer.h"
#include "rtc_base/random.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr int kLowFrequencyLimit = kFftLengthBy2 / 2;
constexpr float kTrueErle = 10.f;
constexpr float kTrueErleOnsets = 1.0f;
constexpr float kEchoPathGain = 3.f;
void VerifyErleBands(rtc::ArrayView<const float> erle,
float reference_lf,
float reference_hf) {
std::for_each(
erle.begin(), erle.begin() + kLowFrequencyLimit,
[reference_lf](float a) { EXPECT_NEAR(reference_lf, a, 0.001); });
std::for_each(
erle.begin() + kLowFrequencyLimit, erle.end(),
[reference_hf](float a) { EXPECT_NEAR(reference_hf, a, 0.001); });
}
void VerifyErle(rtc::ArrayView<const float> erle,
float erle_time_domain,
float reference_lf,
float reference_hf) {
VerifyErleBands(erle, reference_lf, reference_hf);
EXPECT_NEAR(reference_lf, erle_time_domain, 0.5);
}
void FormFarendTimeFrame(rtc::ArrayView<float> x) {
const std::array<float, kBlockSize> frame = {
7459.88, 17209.6, 17383, 20768.9, 16816.7, 18386.3, 4492.83, 9675.85,
6665.52, 14808.6, 9342.3, 7483.28, 19261.7, 4145.98, 1622.18, 13475.2,
7166.32, 6856.61, 21937, 7263.14, 9569.07, 14919, 8413.32, 7551.89,
7848.65, 6011.27, 13080.6, 15865.2, 12656, 17459.6, 4263.93, 4503.03,
9311.79, 21095.8, 12657.9, 13906.6, 19267.2, 11338.1, 16828.9, 11501.6,
11405, 15031.4, 14541.6, 19765.5, 18346.3, 19350.2, 3157.47, 18095.8,
1743.68, 21328.2, 19727.5, 7295.16, 10332.4, 11055.5, 20107.4, 14708.4,
12416.2, 16434, 2454.69, 9840.8, 6867.23, 1615.75, 6059.9, 8394.19};
RTC_DCHECK_GE(x.size(), frame.size());
std::copy(frame.begin(), frame.end(), x.begin());
}
void FormFarendFrame(const RenderBuffer& render_buffer,
std::array<float, kFftLengthBy2Plus1>* X2,
std::array<float, kFftLengthBy2Plus1>* E2,
std::array<float, kFftLengthBy2Plus1>* Y2,
float erle) {
const auto& spectrum_buffer = render_buffer.GetSpectrumBuffer();
const auto& X2_from_buffer = spectrum_buffer.buffer[spectrum_buffer.write];
std::copy(X2_from_buffer.begin(), X2_from_buffer.end(), X2->begin());
std::transform(X2->begin(), X2->end(), Y2->begin(),
[](float a) { return a * kEchoPathGain * kEchoPathGain; });
std::transform(Y2->begin(), Y2->end(), E2->begin(),
[erle](float a) { return a / erle; });
} // namespace
void FormNearendFrame(rtc::ArrayView<float> x,
std::array<float, kFftLengthBy2Plus1>* X2,
std::array<float, kFftLengthBy2Plus1>* E2,
std::array<float, kFftLengthBy2Plus1>* Y2) {
x[0] = 0.f;
X2->fill(0.f);
Y2->fill(500.f * 1000.f * 1000.f);
E2->fill((*Y2)[0]);
}
void GetFilterFreq(std::vector<std::array<float, kFftLengthBy2Plus1>>&
filter_frequency_response,
size_t delay_headroom_blocks) {
RTC_DCHECK_GE(filter_frequency_response.size(), delay_headroom_blocks);
for (auto& block_freq_resp : filter_frequency_response) {
block_freq_resp.fill(0.f);
}
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
filter_frequency_response[delay_headroom_blocks][k] = kEchoPathGain;
}
}
} // namespace
TEST(ErleEstimator, VerifyErleIncreaseAndHold) {
std::array<float, kFftLengthBy2Plus1> X2;
std::array<float, kFftLengthBy2Plus1> E2;
std::array<float, kFftLengthBy2Plus1> Y2;
EchoCanceller3Config config;
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
std::vector<std::array<float, kFftLengthBy2Plus1>> filter_frequency_response(
config.filter.main.length_blocks);
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, 3));
GetFilterFreq(filter_frequency_response, config.delay.delay_headroom_blocks);
ErleEstimator estimator(0, config);
FormFarendTimeFrame(x[0]);
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
// Verifies that the ERLE estimate is properly increased to higher values.
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), &X2, &E2, &Y2,
kTrueErle);
for (size_t k = 0; k < 200; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, true, true);
}
VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
config.erle.max_l, config.erle.max_h);
FormNearendFrame(x[0], &X2, &E2, &Y2);
// Verifies that the ERLE is not immediately decreased during nearend
// activity.
for (size_t k = 0; k < 50; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, true, true);
}
VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
config.erle.max_l, config.erle.max_h);
}
TEST(ErleEstimator, VerifyErleTrackingOnOnsets) {
std::array<float, kFftLengthBy2Plus1> X2;
std::array<float, kFftLengthBy2Plus1> E2;
std::array<float, kFftLengthBy2Plus1> Y2;
EchoCanceller3Config config;
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
std::vector<std::array<float, kFftLengthBy2Plus1>> filter_frequency_response(
config.filter.main.length_blocks);
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, 3));
GetFilterFreq(filter_frequency_response, config.delay.delay_headroom_blocks);
ErleEstimator estimator(0, config);
FormFarendTimeFrame(x[0]);
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
for (size_t burst = 0; burst < 20; ++burst) {
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), &X2, &E2, &Y2,
kTrueErleOnsets);
for (size_t k = 0; k < 10; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, true, true);
}
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), &X2, &E2, &Y2,
kTrueErle);
for (size_t k = 0; k < 200; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, true, true);
}
FormNearendFrame(x[0], &X2, &E2, &Y2);
for (size_t k = 0; k < 300; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, true, true);
}
}
VerifyErleBands(estimator.ErleOnsets(), config.erle.min, config.erle.min);
FormNearendFrame(x[0], &X2, &E2, &Y2);
for (size_t k = 0; k < 1000; k++) {
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2, true, true);
}
// Verifies that during ne activity, Erle converges to the Erle for onsets.
VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
config.erle.min, config.erle.min);
}
} // namespace webrtc