mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 05:40:42 +01:00

Bug: webrtc:15846 Change-Id: I66480cd2a239655a897af5ed2625959e8d6cc33a Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/338644 Reviewed-by: Harald Alvestrand <hta@webrtc.org> Commit-Queue: Tomas Gunnarsson <tommi@webrtc.org> Cr-Commit-Position: refs/heads/main@{#41802}
2747 lines
121 KiB
C++
2747 lines
121 KiB
C++
/*
|
|
* Copyright 2009 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "p2p/client/basic_port_allocator.h"
|
|
|
|
#include <memory>
|
|
#include <ostream> // no-presubmit-check TODO(webrtc:8982)
|
|
|
|
#include "absl/algorithm/container.h"
|
|
#include "absl/strings/string_view.h"
|
|
#include "p2p/base/basic_packet_socket_factory.h"
|
|
#include "p2p/base/p2p_constants.h"
|
|
#include "p2p/base/stun_port.h"
|
|
#include "p2p/base/stun_request.h"
|
|
#include "p2p/base/stun_server.h"
|
|
#include "p2p/base/test_stun_server.h"
|
|
#include "p2p/base/test_turn_server.h"
|
|
#include "rtc_base/fake_clock.h"
|
|
#include "rtc_base/fake_mdns_responder.h"
|
|
#include "rtc_base/fake_network.h"
|
|
#include "rtc_base/firewall_socket_server.h"
|
|
#include "rtc_base/gunit.h"
|
|
#include "rtc_base/ip_address.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/nat_server.h"
|
|
#include "rtc_base/nat_socket_factory.h"
|
|
#include "rtc_base/nat_types.h"
|
|
#include "rtc_base/net_helper.h"
|
|
#include "rtc_base/net_helpers.h"
|
|
#include "rtc_base/net_test_helpers.h"
|
|
#include "rtc_base/network.h"
|
|
#include "rtc_base/network_constants.h"
|
|
#include "rtc_base/network_monitor.h"
|
|
#include "rtc_base/socket.h"
|
|
#include "rtc_base/socket_address.h"
|
|
#include "rtc_base/socket_address_pair.h"
|
|
#include "rtc_base/thread.h"
|
|
#include "rtc_base/virtual_socket_server.h"
|
|
#include "system_wrappers/include/metrics.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
#include "test/scoped_key_value_config.h"
|
|
|
|
using rtc::IPAddress;
|
|
using rtc::SocketAddress;
|
|
using testing::Contains;
|
|
using testing::Not;
|
|
using webrtc::IceCandidateType;
|
|
|
|
#define MAYBE_SKIP_IPV4 \
|
|
if (!rtc::HasIPv4Enabled()) { \
|
|
RTC_LOG(LS_INFO) << "No IPv4... skipping"; \
|
|
return; \
|
|
}
|
|
|
|
static const SocketAddress kAnyAddr("0.0.0.0", 0);
|
|
static const SocketAddress kClientAddr("11.11.11.11", 0);
|
|
static const SocketAddress kClientAddr2("22.22.22.22", 0);
|
|
static const SocketAddress kLoopbackAddr("127.0.0.1", 0);
|
|
static const SocketAddress kPrivateAddr("192.168.1.11", 0);
|
|
static const SocketAddress kPrivateAddr2("192.168.1.12", 0);
|
|
static const SocketAddress kClientIPv6Addr("2401:fa00:4:1000:be30:5bff:fee5:c3",
|
|
0);
|
|
static const SocketAddress kClientIPv6Addr2(
|
|
"2401:fa00:4:2000:be30:5bff:fee5:c3",
|
|
0);
|
|
static const SocketAddress kClientIPv6Addr3(
|
|
"2401:fa00:4:3000:be30:5bff:fee5:c3",
|
|
0);
|
|
static const SocketAddress kClientIPv6Addr4(
|
|
"2401:fa00:4:4000:be30:5bff:fee5:c3",
|
|
0);
|
|
static const SocketAddress kClientIPv6Addr5(
|
|
"2401:fa00:4:5000:be30:5bff:fee5:c3",
|
|
0);
|
|
static const SocketAddress kNatUdpAddr("77.77.77.77", rtc::NAT_SERVER_UDP_PORT);
|
|
static const SocketAddress kNatTcpAddr("77.77.77.77", rtc::NAT_SERVER_TCP_PORT);
|
|
static const SocketAddress kRemoteClientAddr("22.22.22.22", 0);
|
|
static const SocketAddress kStunAddr("99.99.99.1", cricket::STUN_SERVER_PORT);
|
|
static const SocketAddress kTurnUdpIntAddr("99.99.99.4", 3478);
|
|
static const SocketAddress kTurnUdpIntIPv6Addr(
|
|
"2402:fb00:4:1000:be30:5bff:fee5:c3",
|
|
3479);
|
|
static const SocketAddress kTurnTcpIntAddr("99.99.99.5", 3478);
|
|
static const SocketAddress kTurnTcpIntIPv6Addr(
|
|
"2402:fb00:4:2000:be30:5bff:fee5:c3",
|
|
3479);
|
|
static const SocketAddress kTurnUdpExtAddr("99.99.99.6", 0);
|
|
|
|
// Minimum and maximum port for port range tests.
|
|
static const int kMinPort = 10000;
|
|
static const int kMaxPort = 10099;
|
|
|
|
// Based on ICE_UFRAG_LENGTH
|
|
static const char kIceUfrag0[] = "UF00";
|
|
// Based on ICE_PWD_LENGTH
|
|
static const char kIcePwd0[] = "TESTICEPWD00000000000000";
|
|
|
|
static const char kContentName[] = "test content";
|
|
|
|
static const int kDefaultAllocationTimeout = 3000;
|
|
static const char kTurnUsername[] = "test";
|
|
static const char kTurnPassword[] = "test";
|
|
|
|
// STUN timeout (with all retries) is cricket::STUN_TOTAL_TIMEOUT.
|
|
// Add some margin of error for slow bots.
|
|
static const int kStunTimeoutMs = cricket::STUN_TOTAL_TIMEOUT;
|
|
|
|
namespace {
|
|
|
|
void CheckStunKeepaliveIntervalOfAllReadyPorts(
|
|
const cricket::PortAllocatorSession* allocator_session,
|
|
int expected) {
|
|
auto ready_ports = allocator_session->ReadyPorts();
|
|
for (const auto* port : ready_ports) {
|
|
if (port->Type() == cricket::STUN_PORT_TYPE ||
|
|
(port->Type() == cricket::LOCAL_PORT_TYPE &&
|
|
port->GetProtocol() == cricket::PROTO_UDP)) {
|
|
EXPECT_EQ(
|
|
static_cast<const cricket::UDPPort*>(port)->stun_keepalive_delay(),
|
|
expected);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace cricket {
|
|
|
|
// Helper for dumping candidates
|
|
std::ostream& operator<<(std::ostream& os,
|
|
const std::vector<Candidate>& candidates) {
|
|
os << '[';
|
|
bool first = true;
|
|
for (const Candidate& c : candidates) {
|
|
if (!first) {
|
|
os << ", ";
|
|
}
|
|
os << c.ToString();
|
|
first = false;
|
|
}
|
|
os << ']';
|
|
return os;
|
|
}
|
|
|
|
class BasicPortAllocatorTestBase : public ::testing::Test,
|
|
public sigslot::has_slots<> {
|
|
public:
|
|
BasicPortAllocatorTestBase()
|
|
: vss_(new rtc::VirtualSocketServer()),
|
|
fss_(new rtc::FirewallSocketServer(vss_.get())),
|
|
socket_factory_(fss_.get()),
|
|
thread_(fss_.get()),
|
|
// Note that the NAT is not used by default. ResetWithStunServerAndNat
|
|
// must be called.
|
|
nat_factory_(vss_.get(), kNatUdpAddr, kNatTcpAddr),
|
|
nat_socket_factory_(new rtc::BasicPacketSocketFactory(&nat_factory_)),
|
|
stun_server_(TestStunServer::Create(fss_.get(), kStunAddr, thread_)),
|
|
turn_server_(rtc::Thread::Current(),
|
|
fss_.get(),
|
|
kTurnUdpIntAddr,
|
|
kTurnUdpExtAddr),
|
|
candidate_allocation_done_(false) {
|
|
ServerAddresses stun_servers;
|
|
stun_servers.insert(kStunAddr);
|
|
|
|
allocator_ = std::make_unique<BasicPortAllocator>(
|
|
&network_manager_, &socket_factory_, stun_servers, &field_trials_);
|
|
allocator_->Initialize();
|
|
allocator_->set_step_delay(kMinimumStepDelay);
|
|
webrtc::metrics::Reset();
|
|
}
|
|
|
|
void AddInterface(const SocketAddress& addr) {
|
|
network_manager_.AddInterface(addr);
|
|
}
|
|
void AddInterface(const SocketAddress& addr, absl::string_view if_name) {
|
|
network_manager_.AddInterface(addr, if_name);
|
|
}
|
|
void AddInterface(const SocketAddress& addr,
|
|
absl::string_view if_name,
|
|
rtc::AdapterType type) {
|
|
network_manager_.AddInterface(addr, if_name, type);
|
|
}
|
|
// The default source address is the public address that STUN server will
|
|
// observe when the endpoint is sitting on the public internet and the local
|
|
// port is bound to the "any" address. Intended for simulating the situation
|
|
// that client binds the "any" address, and that's also the address returned
|
|
// by getsockname/GetLocalAddress, so that the client can learn the actual
|
|
// local address only from the STUN response.
|
|
void AddInterfaceAsDefaultSourceAddresss(const SocketAddress& addr) {
|
|
AddInterface(addr);
|
|
// When a binding comes from the any address, the `addr` will be used as the
|
|
// srflx address.
|
|
vss_->SetDefaultSourceAddress(addr.ipaddr());
|
|
}
|
|
void RemoveInterface(const SocketAddress& addr) {
|
|
network_manager_.RemoveInterface(addr);
|
|
}
|
|
bool SetPortRange(int min_port, int max_port) {
|
|
return allocator_->SetPortRange(min_port, max_port);
|
|
}
|
|
// Endpoint is on the public network. No STUN or TURN.
|
|
void ResetWithNoServersOrNat() {
|
|
allocator_.reset(
|
|
new BasicPortAllocator(&network_manager_, &socket_factory_));
|
|
allocator_->Initialize();
|
|
allocator_->set_step_delay(kMinimumStepDelay);
|
|
}
|
|
// Endpoint is behind a NAT, with STUN specified.
|
|
void ResetWithStunServerAndNat(const rtc::SocketAddress& stun_server) {
|
|
ResetWithStunServer(stun_server, true);
|
|
}
|
|
// Endpoint is on the public network, with STUN specified.
|
|
void ResetWithStunServerNoNat(const rtc::SocketAddress& stun_server) {
|
|
ResetWithStunServer(stun_server, false);
|
|
}
|
|
// Endpoint is on the public network, with TURN specified.
|
|
void ResetWithTurnServersNoNat(const rtc::SocketAddress& udp_turn,
|
|
const rtc::SocketAddress& tcp_turn) {
|
|
ResetWithNoServersOrNat();
|
|
AddTurnServers(udp_turn, tcp_turn);
|
|
}
|
|
|
|
RelayServerConfig CreateTurnServers(const rtc::SocketAddress& udp_turn,
|
|
const rtc::SocketAddress& tcp_turn) {
|
|
RelayServerConfig turn_server;
|
|
RelayCredentials credentials(kTurnUsername, kTurnPassword);
|
|
turn_server.credentials = credentials;
|
|
|
|
if (!udp_turn.IsNil()) {
|
|
turn_server.ports.push_back(ProtocolAddress(udp_turn, PROTO_UDP));
|
|
}
|
|
if (!tcp_turn.IsNil()) {
|
|
turn_server.ports.push_back(ProtocolAddress(tcp_turn, PROTO_TCP));
|
|
}
|
|
return turn_server;
|
|
}
|
|
|
|
void AddTurnServers(const rtc::SocketAddress& udp_turn,
|
|
const rtc::SocketAddress& tcp_turn) {
|
|
RelayServerConfig turn_server = CreateTurnServers(udp_turn, tcp_turn);
|
|
allocator_->AddTurnServerForTesting(turn_server);
|
|
}
|
|
|
|
bool CreateSession(int component) {
|
|
session_ = CreateSession("session", component);
|
|
if (!session_) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CreateSession(int component, absl::string_view content_name) {
|
|
session_ = CreateSession("session", content_name, component);
|
|
if (!session_) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::unique_ptr<PortAllocatorSession> CreateSession(absl::string_view sid,
|
|
int component) {
|
|
return CreateSession(sid, kContentName, component);
|
|
}
|
|
|
|
std::unique_ptr<PortAllocatorSession> CreateSession(
|
|
absl::string_view sid,
|
|
absl::string_view content_name,
|
|
int component) {
|
|
return CreateSession(sid, content_name, component, kIceUfrag0, kIcePwd0);
|
|
}
|
|
|
|
std::unique_ptr<PortAllocatorSession> CreateSession(
|
|
absl::string_view sid,
|
|
absl::string_view content_name,
|
|
int component,
|
|
absl::string_view ice_ufrag,
|
|
absl::string_view ice_pwd) {
|
|
std::unique_ptr<PortAllocatorSession> session =
|
|
allocator_->CreateSession(content_name, component, ice_ufrag, ice_pwd);
|
|
session->SignalPortReady.connect(this,
|
|
&BasicPortAllocatorTestBase::OnPortReady);
|
|
session->SignalPortsPruned.connect(
|
|
this, &BasicPortAllocatorTestBase::OnPortsPruned);
|
|
session->SignalCandidatesReady.connect(
|
|
this, &BasicPortAllocatorTestBase::OnCandidatesReady);
|
|
session->SignalCandidatesRemoved.connect(
|
|
this, &BasicPortAllocatorTestBase::OnCandidatesRemoved);
|
|
session->SignalCandidatesAllocationDone.connect(
|
|
this, &BasicPortAllocatorTestBase::OnCandidatesAllocationDone);
|
|
return session;
|
|
}
|
|
|
|
// Return true if the addresses are the same, or the port is 0 in `pattern`
|
|
// (acting as a wildcard) and the IPs are the same.
|
|
// Even with a wildcard port, the port of the address should be nonzero if
|
|
// the IP is nonzero.
|
|
static bool AddressMatch(const SocketAddress& address,
|
|
const SocketAddress& pattern) {
|
|
return address.ipaddr() == pattern.ipaddr() &&
|
|
((pattern.port() == 0 &&
|
|
(address.port() != 0 || IPIsAny(address.ipaddr()))) ||
|
|
(pattern.port() != 0 && address.port() == pattern.port()));
|
|
}
|
|
|
|
// Returns the number of ports that have matching type, protocol and
|
|
// address.
|
|
static int CountPorts(const std::vector<PortInterface*>& ports,
|
|
absl::string_view type,
|
|
ProtocolType protocol,
|
|
const SocketAddress& client_addr) {
|
|
return absl::c_count_if(
|
|
ports, [type, protocol, client_addr](PortInterface* port) {
|
|
return port->Type() == type && port->GetProtocol() == protocol &&
|
|
port->Network()->GetBestIP() == client_addr.ipaddr();
|
|
});
|
|
}
|
|
|
|
// Find a candidate and return it.
|
|
static bool FindCandidate(const std::vector<Candidate>& candidates,
|
|
IceCandidateType type,
|
|
absl::string_view proto,
|
|
const SocketAddress& addr,
|
|
Candidate* found) {
|
|
auto it =
|
|
absl::c_find_if(candidates, [type, proto, addr](const Candidate& c) {
|
|
return c.type() == type && c.protocol() == proto &&
|
|
AddressMatch(c.address(), addr);
|
|
});
|
|
if (it != candidates.end() && found) {
|
|
*found = *it;
|
|
}
|
|
return it != candidates.end();
|
|
}
|
|
|
|
// Convenience method to call FindCandidate with no return.
|
|
static bool HasCandidate(const std::vector<Candidate>& candidates,
|
|
IceCandidateType type,
|
|
absl::string_view proto,
|
|
const SocketAddress& addr) {
|
|
return FindCandidate(candidates, type, proto, addr, nullptr);
|
|
}
|
|
|
|
// Version of HasCandidate that also takes a related address.
|
|
static bool HasCandidateWithRelatedAddr(
|
|
const std::vector<Candidate>& candidates,
|
|
IceCandidateType type,
|
|
absl::string_view proto,
|
|
const SocketAddress& addr,
|
|
const SocketAddress& related_addr) {
|
|
return absl::c_any_of(
|
|
candidates, [type, proto, addr, related_addr](const Candidate& c) {
|
|
return c.type() == type && c.protocol() == proto &&
|
|
AddressMatch(c.address(), addr) &&
|
|
AddressMatch(c.related_address(), related_addr);
|
|
});
|
|
}
|
|
|
|
static bool CheckPort(const rtc::SocketAddress& addr,
|
|
int min_port,
|
|
int max_port) {
|
|
return (addr.port() >= min_port && addr.port() <= max_port);
|
|
}
|
|
|
|
static bool HasNetwork(const std::vector<const rtc::Network*>& networks,
|
|
const rtc::Network& to_be_found) {
|
|
auto it =
|
|
absl::c_find_if(networks, [to_be_found](const rtc::Network* network) {
|
|
return network->description() == to_be_found.description() &&
|
|
network->name() == to_be_found.name() &&
|
|
network->prefix() == to_be_found.prefix();
|
|
});
|
|
return it != networks.end();
|
|
}
|
|
|
|
void OnCandidatesAllocationDone(PortAllocatorSession* session) {
|
|
// We should only get this callback once, except in the mux test where
|
|
// we have multiple port allocation sessions.
|
|
if (session == session_.get()) {
|
|
ASSERT_FALSE(candidate_allocation_done_);
|
|
candidate_allocation_done_ = true;
|
|
}
|
|
EXPECT_TRUE(session->CandidatesAllocationDone());
|
|
}
|
|
|
|
// Check if all ports allocated have send-buffer size `expected`. If
|
|
// `expected` == -1, check if GetOptions returns SOCKET_ERROR.
|
|
void CheckSendBufferSizesOfAllPorts(int expected) {
|
|
std::vector<PortInterface*>::iterator it;
|
|
for (it = ports_.begin(); it < ports_.end(); ++it) {
|
|
int send_buffer_size;
|
|
if (expected == -1) {
|
|
EXPECT_EQ(SOCKET_ERROR,
|
|
(*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size));
|
|
} else {
|
|
EXPECT_EQ(0,
|
|
(*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size));
|
|
ASSERT_EQ(expected, send_buffer_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
rtc::VirtualSocketServer* virtual_socket_server() { return vss_.get(); }
|
|
|
|
protected:
|
|
BasicPortAllocator& allocator() { return *allocator_; }
|
|
|
|
void OnPortReady(PortAllocatorSession* ses, PortInterface* port) {
|
|
RTC_LOG(LS_INFO) << "OnPortReady: " << port->ToString();
|
|
ports_.push_back(port);
|
|
// Make sure the new port is added to ReadyPorts.
|
|
auto ready_ports = ses->ReadyPorts();
|
|
EXPECT_THAT(ready_ports, Contains(port));
|
|
}
|
|
void OnPortsPruned(PortAllocatorSession* ses,
|
|
const std::vector<PortInterface*>& pruned_ports) {
|
|
RTC_LOG(LS_INFO) << "Number of ports pruned: " << pruned_ports.size();
|
|
auto ready_ports = ses->ReadyPorts();
|
|
auto new_end = ports_.end();
|
|
for (PortInterface* port : pruned_ports) {
|
|
new_end = std::remove(ports_.begin(), new_end, port);
|
|
// Make sure the pruned port is not in ReadyPorts.
|
|
EXPECT_THAT(ready_ports, Not(Contains(port)));
|
|
}
|
|
ports_.erase(new_end, ports_.end());
|
|
}
|
|
|
|
void OnCandidatesReady(PortAllocatorSession* ses,
|
|
const std::vector<Candidate>& candidates) {
|
|
for (const Candidate& candidate : candidates) {
|
|
RTC_LOG(LS_INFO) << "OnCandidatesReady: " << candidate.ToString();
|
|
// Sanity check that the ICE component is set.
|
|
EXPECT_EQ(ICE_CANDIDATE_COMPONENT_RTP, candidate.component());
|
|
candidates_.push_back(candidate);
|
|
}
|
|
// Make sure the new candidates are added to Candidates.
|
|
auto ses_candidates = ses->ReadyCandidates();
|
|
for (const Candidate& candidate : candidates) {
|
|
EXPECT_THAT(ses_candidates, Contains(candidate));
|
|
}
|
|
}
|
|
|
|
void OnCandidatesRemoved(PortAllocatorSession* session,
|
|
const std::vector<Candidate>& removed_candidates) {
|
|
auto new_end = std::remove_if(
|
|
candidates_.begin(), candidates_.end(),
|
|
[removed_candidates](Candidate& candidate) {
|
|
for (const Candidate& removed_candidate : removed_candidates) {
|
|
if (candidate.MatchesForRemoval(removed_candidate)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
});
|
|
candidates_.erase(new_end, candidates_.end());
|
|
}
|
|
|
|
bool HasRelayAddress(const ProtocolAddress& proto_addr) {
|
|
for (size_t i = 0; i < allocator_->turn_servers().size(); ++i) {
|
|
RelayServerConfig server_config = allocator_->turn_servers()[i];
|
|
PortList::const_iterator relay_port;
|
|
for (relay_port = server_config.ports.begin();
|
|
relay_port != server_config.ports.end(); ++relay_port) {
|
|
if (proto_addr.address == relay_port->address &&
|
|
proto_addr.proto == relay_port->proto)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ResetWithStunServer(const rtc::SocketAddress& stun_server,
|
|
bool with_nat) {
|
|
if (with_nat) {
|
|
nat_server_.reset(new rtc::NATServer(
|
|
rtc::NAT_OPEN_CONE, thread_, vss_.get(), kNatUdpAddr, kNatTcpAddr,
|
|
thread_, vss_.get(), rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
|
|
} else {
|
|
nat_socket_factory_ =
|
|
std::make_unique<rtc::BasicPacketSocketFactory>(fss_.get());
|
|
}
|
|
|
|
ServerAddresses stun_servers;
|
|
if (!stun_server.IsNil()) {
|
|
stun_servers.insert(stun_server);
|
|
}
|
|
allocator_.reset(new BasicPortAllocator(&network_manager_,
|
|
nat_socket_factory_.get(),
|
|
stun_servers, &field_trials_));
|
|
allocator_->Initialize();
|
|
allocator_->set_step_delay(kMinimumStepDelay);
|
|
}
|
|
|
|
std::unique_ptr<rtc::VirtualSocketServer> vss_;
|
|
std::unique_ptr<rtc::FirewallSocketServer> fss_;
|
|
rtc::BasicPacketSocketFactory socket_factory_;
|
|
rtc::AutoSocketServerThread thread_;
|
|
std::unique_ptr<rtc::NATServer> nat_server_;
|
|
rtc::NATSocketFactory nat_factory_;
|
|
std::unique_ptr<rtc::BasicPacketSocketFactory> nat_socket_factory_;
|
|
TestStunServer::StunServerPtr stun_server_;
|
|
TestTurnServer turn_server_;
|
|
rtc::FakeNetworkManager network_manager_;
|
|
std::unique_ptr<BasicPortAllocator> allocator_;
|
|
std::unique_ptr<PortAllocatorSession> session_;
|
|
std::vector<PortInterface*> ports_;
|
|
std::vector<Candidate> candidates_;
|
|
bool candidate_allocation_done_;
|
|
webrtc::test::ScopedKeyValueConfig field_trials_;
|
|
};
|
|
|
|
class BasicPortAllocatorTestWithRealClock : public BasicPortAllocatorTestBase {
|
|
};
|
|
|
|
class FakeClockBase {
|
|
public:
|
|
rtc::ScopedFakeClock fake_clock;
|
|
};
|
|
|
|
class BasicPortAllocatorTest : public FakeClockBase,
|
|
public BasicPortAllocatorTestBase {
|
|
public:
|
|
// This function starts the port/address gathering and check the existence of
|
|
// candidates as specified. When `expect_stun_candidate` is true,
|
|
// `stun_candidate_addr` carries the expected reflective address, which is
|
|
// also the related address for TURN candidate if it is expected. Otherwise,
|
|
// it should be ignore.
|
|
void CheckDisableAdapterEnumeration(
|
|
uint32_t total_ports,
|
|
const rtc::IPAddress& host_candidate_addr,
|
|
const rtc::IPAddress& stun_candidate_addr,
|
|
const rtc::IPAddress& relay_candidate_udp_transport_addr,
|
|
const rtc::IPAddress& relay_candidate_tcp_transport_addr) {
|
|
network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(),
|
|
rtc::IPAddress());
|
|
if (!session_) {
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
}
|
|
session_->set_flags(session_->flags() |
|
|
PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
|
|
allocator().set_allow_tcp_listen(false);
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
|
|
uint32_t total_candidates = 0;
|
|
if (!host_candidate_addr.IsNil()) {
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
rtc::SocketAddress(kPrivateAddr.ipaddr(), 0)));
|
|
++total_candidates;
|
|
}
|
|
if (!stun_candidate_addr.IsNil()) {
|
|
rtc::SocketAddress related_address(host_candidate_addr, 0);
|
|
if (host_candidate_addr.IsNil()) {
|
|
related_address.SetIP(rtc::GetAnyIP(stun_candidate_addr.family()));
|
|
}
|
|
EXPECT_TRUE(HasCandidateWithRelatedAddr(
|
|
candidates_, IceCandidateType::kSrflx, "udp",
|
|
rtc::SocketAddress(stun_candidate_addr, 0), related_address));
|
|
++total_candidates;
|
|
}
|
|
if (!relay_candidate_udp_transport_addr.IsNil()) {
|
|
EXPECT_TRUE(HasCandidateWithRelatedAddr(
|
|
candidates_, IceCandidateType::kRelay, "udp",
|
|
rtc::SocketAddress(relay_candidate_udp_transport_addr, 0),
|
|
rtc::SocketAddress(stun_candidate_addr, 0)));
|
|
++total_candidates;
|
|
}
|
|
if (!relay_candidate_tcp_transport_addr.IsNil()) {
|
|
EXPECT_TRUE(HasCandidateWithRelatedAddr(
|
|
candidates_, IceCandidateType::kRelay, "udp",
|
|
rtc::SocketAddress(relay_candidate_tcp_transport_addr, 0),
|
|
rtc::SocketAddress(stun_candidate_addr, 0)));
|
|
++total_candidates;
|
|
}
|
|
|
|
EXPECT_EQ(total_candidates, candidates_.size());
|
|
EXPECT_EQ(total_ports, ports_.size());
|
|
}
|
|
|
|
void TestIPv6TurnPortPrunesIPv4TurnPort() {
|
|
turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP);
|
|
// Add two IP addresses on the same interface.
|
|
AddInterface(kClientAddr, "net1");
|
|
AddInterface(kClientIPv6Addr, "net1");
|
|
allocator_.reset(
|
|
new BasicPortAllocator(&network_manager_, &socket_factory_));
|
|
allocator_->Initialize();
|
|
allocator_->SetConfiguration(allocator_->stun_servers(),
|
|
allocator_->turn_servers(), 0,
|
|
webrtc::PRUNE_BASED_ON_PRIORITY);
|
|
AddTurnServers(kTurnUdpIntIPv6Addr, rtc::SocketAddress());
|
|
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
|
|
|
|
allocator_->set_step_delay(kMinimumStepDelay);
|
|
allocator_->set_flags(
|
|
allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
|
|
PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP);
|
|
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Three ports (one IPv4 STUN, one IPv6 STUN and one TURN) will be ready.
|
|
EXPECT_EQ(3U, session_->ReadyPorts().size());
|
|
EXPECT_EQ(3U, ports_.size());
|
|
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
|
|
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr));
|
|
EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr));
|
|
EXPECT_EQ(0, CountPorts(ports_, "relay", PROTO_UDP, kClientAddr));
|
|
|
|
// Now that we remove candidates when a TURN port is pruned, there will be
|
|
// exactly 3 candidates in both `candidates_` and `ready_candidates`.
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
const std::vector<Candidate>& ready_candidates =
|
|
session_->ReadyCandidates();
|
|
EXPECT_EQ(3U, ready_candidates.size());
|
|
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "udp",
|
|
kClientAddr));
|
|
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kRelay, "udp",
|
|
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
|
|
}
|
|
|
|
void TestTurnPortPrunesWithUdpAndTcpPorts(
|
|
webrtc::PortPrunePolicy prune_policy,
|
|
bool tcp_pruned) {
|
|
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
|
|
AddInterface(kClientAddr);
|
|
allocator_.reset(
|
|
new BasicPortAllocator(&network_manager_, &socket_factory_));
|
|
allocator_->Initialize();
|
|
allocator_->SetConfiguration(allocator_->stun_servers(),
|
|
allocator_->turn_servers(), 0, prune_policy);
|
|
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
|
|
allocator_->set_step_delay(kMinimumStepDelay);
|
|
allocator_->set_flags(allocator().flags() |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Only 2 ports (one STUN and one TURN) are actually being used.
|
|
EXPECT_EQ(2U, session_->ReadyPorts().size());
|
|
// We have verified that each port, when it is added to `ports_`, it is
|
|
// found in `ready_ports`, and when it is pruned, it is not found in
|
|
// `ready_ports`, so we only need to verify the content in one of them.
|
|
EXPECT_EQ(2U, ports_.size());
|
|
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
|
|
int num_udp_ports = tcp_pruned ? 1 : 0;
|
|
EXPECT_EQ(num_udp_ports,
|
|
CountPorts(ports_, "relay", PROTO_UDP, kClientAddr));
|
|
EXPECT_EQ(1 - num_udp_ports,
|
|
CountPorts(ports_, "relay", PROTO_TCP, kClientAddr));
|
|
|
|
// Now that we remove candidates when a TURN port is pruned, `candidates_`
|
|
// should only contains two candidates regardless whether the TCP TURN port
|
|
// is created before or after the UDP turn port.
|
|
EXPECT_EQ(2U, candidates_.size());
|
|
// There will only be 2 candidates in `ready_candidates` because it only
|
|
// includes the candidates in the ready ports.
|
|
const std::vector<Candidate>& ready_candidates =
|
|
session_->ReadyCandidates();
|
|
EXPECT_EQ(2U, ready_candidates.size());
|
|
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "udp",
|
|
kClientAddr));
|
|
|
|
// The external candidate is always udp.
|
|
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kRelay, "udp",
|
|
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
|
|
}
|
|
|
|
void TestEachInterfaceHasItsOwnTurnPorts() {
|
|
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
|
|
turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP);
|
|
turn_server_.AddInternalSocket(kTurnTcpIntIPv6Addr, PROTO_TCP);
|
|
// Add two interfaces both having IPv4 and IPv6 addresses.
|
|
AddInterface(kClientAddr, "net1", rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(kClientIPv6Addr, "net1", rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(kClientAddr2, "net2", rtc::ADAPTER_TYPE_CELLULAR);
|
|
AddInterface(kClientIPv6Addr2, "net2", rtc::ADAPTER_TYPE_CELLULAR);
|
|
allocator_.reset(
|
|
new BasicPortAllocator(&network_manager_, &socket_factory_));
|
|
allocator_->Initialize();
|
|
allocator_->SetConfiguration(allocator_->stun_servers(),
|
|
allocator_->turn_servers(), 0,
|
|
webrtc::PRUNE_BASED_ON_PRIORITY);
|
|
// Have both UDP/TCP and IPv4/IPv6 TURN ports.
|
|
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
|
|
AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
|
|
|
|
allocator_->set_step_delay(kMinimumStepDelay);
|
|
allocator_->set_flags(
|
|
allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
|
|
PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// 10 ports (4 STUN and 1 TURN ports on each interface) will be ready to
|
|
// use.
|
|
EXPECT_EQ(10U, session_->ReadyPorts().size());
|
|
EXPECT_EQ(10U, ports_.size());
|
|
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
|
|
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr2));
|
|
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr));
|
|
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr2));
|
|
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr));
|
|
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr2));
|
|
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr));
|
|
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr2));
|
|
EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr));
|
|
EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr2));
|
|
|
|
// Now that we remove candidates when TURN ports are pruned, there will be
|
|
// exactly 10 candidates in `candidates_`.
|
|
EXPECT_EQ(10U, candidates_.size());
|
|
const std::vector<Candidate>& ready_candidates =
|
|
session_->ReadyCandidates();
|
|
EXPECT_EQ(10U, ready_candidates.size());
|
|
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "udp",
|
|
kClientAddr));
|
|
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "udp",
|
|
kClientAddr2));
|
|
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr));
|
|
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr2));
|
|
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "tcp",
|
|
kClientAddr));
|
|
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "tcp",
|
|
kClientAddr2));
|
|
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "tcp",
|
|
kClientIPv6Addr));
|
|
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kHost, "tcp",
|
|
kClientIPv6Addr2));
|
|
EXPECT_TRUE(HasCandidate(ready_candidates, IceCandidateType::kRelay, "udp",
|
|
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
|
|
}
|
|
};
|
|
|
|
// Tests that we can init the port allocator and create a session.
|
|
TEST_F(BasicPortAllocatorTest, TestBasic) {
|
|
EXPECT_EQ(&network_manager_, allocator().network_manager());
|
|
EXPECT_EQ(kStunAddr, *allocator().stun_servers().begin());
|
|
ASSERT_EQ(0u, allocator().turn_servers().size());
|
|
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
EXPECT_FALSE(session_->CandidatesAllocationDone());
|
|
}
|
|
|
|
// Tests that our network filtering works properly.
|
|
TEST_F(BasicPortAllocatorTest, TestIgnoreOnlyLoopbackNetworkByDefault) {
|
|
AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0",
|
|
rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0",
|
|
rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0",
|
|
rtc::ADAPTER_TYPE_CELLULAR);
|
|
AddInterface(SocketAddress(IPAddress(0x12345603U), 0), "test_vpn0",
|
|
rtc::ADAPTER_TYPE_VPN);
|
|
AddInterface(SocketAddress(IPAddress(0x12345604U), 0), "test_lo",
|
|
rtc::ADAPTER_TYPE_LOOPBACK);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(4U, candidates_.size());
|
|
for (const Candidate& candidate : candidates_) {
|
|
EXPECT_LT(candidate.address().ip(), 0x12345604U);
|
|
}
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, TestIgnoreNetworksAccordingToIgnoreMask) {
|
|
AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0",
|
|
rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0",
|
|
rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0",
|
|
rtc::ADAPTER_TYPE_CELLULAR);
|
|
allocator_->SetNetworkIgnoreMask(rtc::ADAPTER_TYPE_ETHERNET |
|
|
rtc::ADAPTER_TYPE_LOOPBACK |
|
|
rtc::ADAPTER_TYPE_WIFI);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(1U, candidates_.size());
|
|
EXPECT_EQ(0x12345602U, candidates_[0].address().ip());
|
|
}
|
|
|
|
// Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
|
|
// both Wi-Fi and cell interfaces are available, only Wi-Fi is used.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
WifiUsedInsteadOfCellWhenCostlyNetworksDisabled) {
|
|
SocketAddress wifi(IPAddress(0x12345600U), 0);
|
|
SocketAddress cell(IPAddress(0x12345601U), 0);
|
|
AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(cell, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
|
|
// Disable all but UDP candidates to make the test simpler.
|
|
allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
|
|
cricket::PORTALLOCATOR_DISABLE_RELAY |
|
|
cricket::PORTALLOCATOR_DISABLE_TCP |
|
|
cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
|
|
ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Should only get one Wi-Fi candidate.
|
|
EXPECT_EQ(1U, candidates_.size());
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp", wifi));
|
|
}
|
|
|
|
// Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
|
|
// both "unknown" and cell interfaces are available, only the unknown are used.
|
|
// The unknown interface may be something that ultimately uses Wi-Fi, so we do
|
|
// this to be on the safe side.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
UnknownInterfaceUsedInsteadOfCellWhenCostlyNetworksDisabled) {
|
|
SocketAddress cell(IPAddress(0x12345601U), 0);
|
|
SocketAddress unknown1(IPAddress(0x12345602U), 0);
|
|
SocketAddress unknown2(IPAddress(0x12345603U), 0);
|
|
AddInterface(cell, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
|
|
AddInterface(unknown1, "test_unknown0", rtc::ADAPTER_TYPE_UNKNOWN);
|
|
AddInterface(unknown2, "test_unknown1", rtc::ADAPTER_TYPE_UNKNOWN);
|
|
// Disable all but UDP candidates to make the test simpler.
|
|
allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
|
|
cricket::PORTALLOCATOR_DISABLE_RELAY |
|
|
cricket::PORTALLOCATOR_DISABLE_TCP |
|
|
cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
|
|
ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Should only get two candidates, none of which is cell.
|
|
EXPECT_EQ(2U, candidates_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", unknown1));
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", unknown2));
|
|
}
|
|
|
|
// Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
|
|
// there are a mix of Wi-Fi, "unknown" and cell interfaces, only the Wi-Fi
|
|
// interface is used.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
WifiUsedInsteadOfUnknownOrCellWhenCostlyNetworksDisabled) {
|
|
SocketAddress wifi(IPAddress(0x12345600U), 0);
|
|
SocketAddress cellular(IPAddress(0x12345601U), 0);
|
|
SocketAddress unknown1(IPAddress(0x12345602U), 0);
|
|
SocketAddress unknown2(IPAddress(0x12345603U), 0);
|
|
AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
|
|
AddInterface(unknown1, "test_unknown0", rtc::ADAPTER_TYPE_UNKNOWN);
|
|
AddInterface(unknown2, "test_unknown1", rtc::ADAPTER_TYPE_UNKNOWN);
|
|
// Disable all but UDP candidates to make the test simpler.
|
|
allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
|
|
cricket::PORTALLOCATOR_DISABLE_RELAY |
|
|
cricket::PORTALLOCATOR_DISABLE_TCP |
|
|
cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
|
|
ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Should only get one Wi-Fi candidate.
|
|
EXPECT_EQ(1U, candidates_.size());
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp", wifi));
|
|
}
|
|
|
|
// Test that if the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set, but the
|
|
// only interface available is cellular, it ends up used anyway. A costly
|
|
// connection is always better than no connection.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
CellUsedWhenCostlyNetworksDisabledButThereAreNoOtherInterfaces) {
|
|
SocketAddress cellular(IPAddress(0x12345601U), 0);
|
|
AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
|
|
// Disable all but UDP candidates to make the test simpler.
|
|
allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
|
|
cricket::PORTALLOCATOR_DISABLE_RELAY |
|
|
cricket::PORTALLOCATOR_DISABLE_TCP |
|
|
cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
|
|
ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Make sure we got the cell candidate.
|
|
EXPECT_EQ(1U, candidates_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", cellular));
|
|
}
|
|
|
|
// Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is
|
|
// a WiFi network with link-local IP address and a cellular network, then the
|
|
// cellular candidate will still be gathered.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
CellNotRemovedWhenCostlyNetworksDisabledAndWifiIsLinkLocal) {
|
|
SocketAddress wifi_link_local("169.254.0.1", 0);
|
|
SocketAddress cellular(IPAddress(0x12345601U), 0);
|
|
AddInterface(wifi_link_local, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
|
|
|
|
allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
|
|
cricket::PORTALLOCATOR_DISABLE_RELAY |
|
|
cricket::PORTALLOCATOR_DISABLE_TCP |
|
|
cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
|
|
ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Make sure we got both wifi and cell candidates.
|
|
EXPECT_EQ(2U, candidates_.size());
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
wifi_link_local));
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", cellular));
|
|
}
|
|
|
|
// Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is
|
|
// a WiFi network with link-local IP address, a WiFi network with a normal IP
|
|
// address and a cellular network, then the cellular candidate will not be
|
|
// gathered.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
CellRemovedWhenCostlyNetworksDisabledAndBothWifisPresent) {
|
|
SocketAddress wifi(IPAddress(0x12345600U), 0);
|
|
SocketAddress wifi_link_local("169.254.0.1", 0);
|
|
SocketAddress cellular(IPAddress(0x12345601U), 0);
|
|
AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(wifi_link_local, "test_wlan1", rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
|
|
|
|
allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
|
|
cricket::PORTALLOCATOR_DISABLE_RELAY |
|
|
cricket::PORTALLOCATOR_DISABLE_TCP |
|
|
cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
|
|
ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Make sure we got only wifi candidates.
|
|
EXPECT_EQ(2U, candidates_.size());
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp", wifi));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
wifi_link_local));
|
|
}
|
|
|
|
// Test that the adapter types of the Ethernet and the VPN can be correctly
|
|
// identified so that the Ethernet has a lower network cost than the VPN, and
|
|
// the Ethernet is not filtered out if PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is
|
|
// set.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
EthernetIsNotFilteredOutWhenCostlyNetworksDisabledAndVpnPresent) {
|
|
AddInterface(kClientAddr, "eth0", rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(kClientAddr2, "tap0", rtc::ADAPTER_TYPE_VPN);
|
|
allocator().set_flags(PORTALLOCATOR_DISABLE_COSTLY_NETWORKS |
|
|
PORTALLOCATOR_DISABLE_RELAY |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// The VPN tap0 network should be filtered out as a costly network, and we
|
|
// should have a UDP port and a STUN port from the Ethernet eth0.
|
|
ASSERT_EQ(2U, ports_.size());
|
|
EXPECT_EQ(ports_[0]->Network()->name(), "eth0");
|
|
EXPECT_EQ(ports_[1]->Network()->name(), "eth0");
|
|
}
|
|
|
|
// Test that no more than allocator.max_ipv6_networks() IPv6 networks are used
|
|
// to gather candidates.
|
|
TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitEnforced) {
|
|
// Add three IPv6 network interfaces, but tell the allocator to only use two.
|
|
allocator().set_max_ipv6_networks(2);
|
|
AddInterface(kClientIPv6Addr, "eth0", rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(kClientIPv6Addr2, "eth1", rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(kClientIPv6Addr3, "eth2", rtc::ADAPTER_TYPE_ETHERNET);
|
|
|
|
// To simplify the test, only gather UDP host candidates.
|
|
allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
|
|
PORTALLOCATOR_DISABLE_STUN |
|
|
PORTALLOCATOR_DISABLE_RELAY);
|
|
|
|
ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(2U, candidates_.size());
|
|
// Ensure the expected two interfaces (eth0 and eth1) were used.
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr2));
|
|
}
|
|
|
|
// Ensure that allocator.max_ipv6_networks() doesn't prevent IPv4 networks from
|
|
// being used.
|
|
TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitDoesNotImpactIpv4Networks) {
|
|
// Set the "max IPv6" limit to 1, adding two IPv6 and two IPv4 networks.
|
|
allocator().set_max_ipv6_networks(1);
|
|
AddInterface(kClientIPv6Addr, "eth0", rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(kClientIPv6Addr2, "eth1", rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(kClientAddr, "eth2", rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(kClientAddr2, "eth3", rtc::ADAPTER_TYPE_ETHERNET);
|
|
|
|
// To simplify the test, only gather UDP host candidates.
|
|
allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
|
|
PORTALLOCATOR_DISABLE_STUN |
|
|
PORTALLOCATOR_DISABLE_RELAY);
|
|
|
|
ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
// Ensure that only one IPv6 interface was used, but both IPv4 interfaces
|
|
// were used.
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr));
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr2));
|
|
}
|
|
|
|
// Test that we could use loopback interface as host candidate.
|
|
TEST_F(BasicPortAllocatorTest, TestLoopbackNetworkInterface) {
|
|
AddInterface(kLoopbackAddr, "test_loopback", rtc::ADAPTER_TYPE_LOOPBACK);
|
|
allocator_->SetNetworkIgnoreMask(0);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(1U, candidates_.size());
|
|
}
|
|
|
|
// Tests that we can get all the desired addresses successfully.
|
|
TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithMinimumStepDelay) {
|
|
AddInterface(kClientAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
EXPECT_EQ(3U, ports_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kSrflx, "udp", kClientAddr));
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
|
|
}
|
|
|
|
// Test that when the same network interface is brought down and up, the
|
|
// port allocator session will restart a new allocation sequence if
|
|
// it is not stopped.
|
|
TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionNotStopped) {
|
|
std::string if_name("test_net0");
|
|
AddInterface(kClientAddr, if_name);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
EXPECT_EQ(3U, ports_.size());
|
|
candidate_allocation_done_ = false;
|
|
candidates_.clear();
|
|
ports_.clear();
|
|
|
|
// Disable socket creation to simulate the network interface being down. When
|
|
// no network interfaces are available, BasicPortAllocator will fall back to
|
|
// binding to the "ANY" address, so we need to make sure that fails too.
|
|
fss_->set_tcp_sockets_enabled(false);
|
|
fss_->set_udp_sockets_enabled(false);
|
|
RemoveInterface(kClientAddr);
|
|
SIMULATED_WAIT(false, 1000, fake_clock);
|
|
EXPECT_EQ(0U, candidates_.size());
|
|
ports_.clear();
|
|
candidate_allocation_done_ = false;
|
|
|
|
// When the same interfaces are added again, new candidates/ports should be
|
|
// generated.
|
|
fss_->set_tcp_sockets_enabled(true);
|
|
fss_->set_udp_sockets_enabled(true);
|
|
AddInterface(kClientAddr, if_name);
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
EXPECT_EQ(3U, ports_.size());
|
|
}
|
|
|
|
// Test that when the same network interface is brought down and up, the
|
|
// port allocator session will not restart a new allocation sequence if
|
|
// it is stopped.
|
|
TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionStopped) {
|
|
std::string if_name("test_net0");
|
|
AddInterface(kClientAddr, if_name);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
EXPECT_EQ(3U, ports_.size());
|
|
session_->StopGettingPorts();
|
|
candidates_.clear();
|
|
ports_.clear();
|
|
|
|
RemoveInterface(kClientAddr);
|
|
// Wait one (simulated) second and then verify no new candidates have
|
|
// appeared.
|
|
SIMULATED_WAIT(false, 1000, fake_clock);
|
|
EXPECT_EQ(0U, candidates_.size());
|
|
EXPECT_EQ(0U, ports_.size());
|
|
|
|
// When the same interfaces are added again, new candidates/ports should not
|
|
// be generated because the session has stopped.
|
|
AddInterface(kClientAddr, if_name);
|
|
SIMULATED_WAIT(false, 1000, fake_clock);
|
|
EXPECT_EQ(0U, candidates_.size());
|
|
EXPECT_EQ(0U, ports_.size());
|
|
}
|
|
|
|
// Similar to the above tests, but tests a situation when sockets can't be
|
|
// bound to a network interface, then after a network change event can be.
|
|
// Related bug: https://bugs.chromium.org/p/webrtc/issues/detail?id=8256
|
|
TEST_F(BasicPortAllocatorTest, CandidatesRegatheredAfterBindingFails) {
|
|
// Only test local ports to simplify test.
|
|
ResetWithNoServersOrNat();
|
|
// Provide a situation where the interface appears to be available, but
|
|
// binding the sockets fails. See bug for description of when this can
|
|
// happen.
|
|
std::string if_name("test_net0");
|
|
AddInterface(kClientAddr, if_name);
|
|
fss_->set_tcp_sockets_enabled(false);
|
|
fss_->set_udp_sockets_enabled(false);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Make sure we actually prevented candidates from being gathered (other than
|
|
// a single TCP active candidate, since that doesn't require creating a
|
|
// socket).
|
|
ASSERT_EQ(1U, candidates_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
|
|
candidate_allocation_done_ = false;
|
|
|
|
// Now simulate the interface coming up, with the newfound ability to bind
|
|
// sockets.
|
|
fss_->set_tcp_sockets_enabled(true);
|
|
fss_->set_udp_sockets_enabled(true);
|
|
AddInterface(kClientAddr, if_name);
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Should get UDP and TCP candidate.
|
|
ASSERT_EQ(2U, candidates_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
// TODO(deadbeef): This is actually the same active TCP candidate as before.
|
|
// We should extend this test to also verify that a server candidate is
|
|
// gathered.
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
|
|
}
|
|
|
|
// Verify candidates with default step delay of 1sec.
|
|
TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithOneSecondStepDelay) {
|
|
AddInterface(kClientAddr);
|
|
allocator_->set_step_delay(kDefaultStepDelay);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
|
|
EXPECT_EQ(2U, ports_.size());
|
|
ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), 2000, fake_clock);
|
|
EXPECT_EQ(3U, ports_.size());
|
|
|
|
ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), 1500, fake_clock);
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
|
|
EXPECT_EQ(3U, ports_.size());
|
|
EXPECT_TRUE(candidate_allocation_done_);
|
|
// If we Stop gathering now, we shouldn't get a second "done" callback.
|
|
session_->StopGettingPorts();
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, TestSetupVideoRtpPortsWithNormalSendBuffers) {
|
|
AddInterface(kClientAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP, CN_VIDEO));
|
|
session_->StartGettingPorts();
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
// If we Stop gathering now, we shouldn't get a second "done" callback.
|
|
session_->StopGettingPorts();
|
|
|
|
// All ports should have unset send-buffer sizes.
|
|
CheckSendBufferSizesOfAllPorts(-1);
|
|
}
|
|
|
|
// Tests that we can get callback after StopGetAllPorts when called in the
|
|
// middle of gathering.
|
|
TEST_F(BasicPortAllocatorTest, TestStopGetAllPorts) {
|
|
AddInterface(kClientAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
|
|
fake_clock);
|
|
EXPECT_EQ(2U, ports_.size());
|
|
session_->StopGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
}
|
|
|
|
// Test that we restrict client ports appropriately when a port range is set.
|
|
// We check the candidates for udp/stun/tcp ports, and the from address
|
|
// for relay ports.
|
|
TEST_F(BasicPortAllocatorTest, TestGetAllPortsPortRange) {
|
|
AddInterface(kClientAddr);
|
|
// Check that an invalid port range fails.
|
|
EXPECT_FALSE(SetPortRange(kMaxPort, kMinPort));
|
|
// Check that a null port range succeeds.
|
|
EXPECT_TRUE(SetPortRange(0, 0));
|
|
// Check that a valid port range succeeds.
|
|
EXPECT_TRUE(SetPortRange(kMinPort, kMaxPort));
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
EXPECT_EQ(3U, ports_.size());
|
|
|
|
int num_nonrelay_candidates = 0;
|
|
for (const Candidate& candidate : candidates_) {
|
|
// Check the port number for the UDP/STUN/TCP port objects.
|
|
if (!candidate.is_relay()) {
|
|
EXPECT_TRUE(CheckPort(candidate.address(), kMinPort, kMaxPort));
|
|
++num_nonrelay_candidates;
|
|
}
|
|
}
|
|
EXPECT_EQ(3, num_nonrelay_candidates);
|
|
}
|
|
|
|
// Test that if we have no network adapters, we bind to the ANY address and
|
|
// still get non-host candidates.
|
|
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoAdapters) {
|
|
// Default config uses GTURN and no NAT, so replace that with the
|
|
// desired setup (NAT, STUN server, TURN server, UDP/TCP).
|
|
ResetWithStunServerAndNat(kStunAddr);
|
|
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
|
|
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
|
|
AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(4U, ports_.size());
|
|
EXPECT_EQ(1, CountPorts(ports_, "stun", PROTO_UDP, kAnyAddr));
|
|
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kAnyAddr));
|
|
// Two TURN ports, using UDP/TCP for the first hop to the TURN server.
|
|
EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kAnyAddr));
|
|
EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_TCP, kAnyAddr));
|
|
// The "any" address port should be in the signaled ready ports, but the host
|
|
// candidate for it is useless and shouldn't be signaled. So we only have
|
|
// STUN/TURN candidates.
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kSrflx, "udp",
|
|
rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
|
|
// Again, two TURN candidates, using UDP/TCP for the first hop to the TURN
|
|
// server.
|
|
rtc::SocketAddress addr(kTurnUdpExtAddr.ipaddr(), 0);
|
|
EXPECT_EQ(2, absl::c_count_if(candidates_, [&](const Candidate& c) {
|
|
return c.is_relay() && c.protocol() == "udp" &&
|
|
AddressMatch(c.address(), addr);
|
|
}));
|
|
}
|
|
|
|
// Test that when enumeration is disabled, we should not have any ports when
|
|
// candidate_filter() is set to CF_RELAY and no relay is specified.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
TestDisableAdapterEnumerationWithoutNatRelayTransportOnly) {
|
|
ResetWithStunServerNoNat(kStunAddr);
|
|
allocator().SetCandidateFilter(CF_RELAY);
|
|
// Expect to see no ports and no candidates.
|
|
CheckDisableAdapterEnumeration(0U, rtc::IPAddress(), rtc::IPAddress(),
|
|
rtc::IPAddress(), rtc::IPAddress());
|
|
}
|
|
|
|
// Test that even with multiple interfaces, the result should still be a single
|
|
// default private, one STUN and one TURN candidate since we bind to any address
|
|
// (i.e. all 0s).
|
|
TEST_F(BasicPortAllocatorTest,
|
|
TestDisableAdapterEnumerationBehindNatMultipleInterfaces) {
|
|
AddInterface(kPrivateAddr);
|
|
AddInterface(kPrivateAddr2);
|
|
ResetWithStunServerAndNat(kStunAddr);
|
|
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
|
|
|
|
// Enable IPv6 here. Since the network_manager doesn't have IPv6 default
|
|
// address set and we have no IPv6 STUN server, there should be no IPv6
|
|
// candidates.
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->set_flags(PORTALLOCATOR_ENABLE_IPV6);
|
|
|
|
// Expect to see 3 ports for IPv4: HOST/STUN, TURN/UDP and TCP ports, 2 ports
|
|
// for IPv6: HOST, and TCP. Only IPv4 candidates: a default private, STUN and
|
|
// TURN/UDP candidates.
|
|
CheckDisableAdapterEnumeration(5U, kPrivateAddr.ipaddr(),
|
|
kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(),
|
|
rtc::IPAddress());
|
|
}
|
|
|
|
// Test that we should get a default private, STUN, TURN/UDP and TURN/TCP
|
|
// candidates when both TURN/UDP and TURN/TCP servers are specified.
|
|
TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationBehindNatWithTcp) {
|
|
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
|
|
AddInterface(kPrivateAddr);
|
|
ResetWithStunServerAndNat(kStunAddr);
|
|
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
|
|
// Expect to see 4 ports - STUN, TURN/UDP, TURN/TCP and TCP port. A default
|
|
// private, STUN, TURN/UDP, and TURN/TCP candidates.
|
|
CheckDisableAdapterEnumeration(4U, kPrivateAddr.ipaddr(),
|
|
kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(),
|
|
kTurnUdpExtAddr.ipaddr());
|
|
}
|
|
|
|
// Test that when adapter enumeration is disabled, for endpoints without
|
|
// STUN/TURN specified, a default private candidate is still generated.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
TestDisableAdapterEnumerationWithoutNatOrServers) {
|
|
ResetWithNoServersOrNat();
|
|
// Expect to see 2 ports: STUN and TCP ports, one default private candidate.
|
|
CheckDisableAdapterEnumeration(2U, kPrivateAddr.ipaddr(), rtc::IPAddress(),
|
|
rtc::IPAddress(), rtc::IPAddress());
|
|
}
|
|
|
|
// Test that when adapter enumeration is disabled, with
|
|
// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind
|
|
// a NAT, there is no local candidate.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
TestDisableAdapterEnumerationWithoutNatLocalhostCandidateDisabled) {
|
|
ResetWithStunServerNoNat(kStunAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
|
|
// Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN
|
|
// candidate.
|
|
CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), rtc::IPAddress(),
|
|
rtc::IPAddress(), rtc::IPAddress());
|
|
}
|
|
|
|
// Test that when adapter enumeration is disabled, with
|
|
// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind
|
|
// a NAT, there is no local candidate. However, this specified default route
|
|
// (kClientAddr) which was discovered when sending STUN requests, will become
|
|
// the srflx addresses.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
TestDisableAdapterEnumerationWithoutNatLocalhostCandDisabledDiffRoute) {
|
|
ResetWithStunServerNoNat(kStunAddr);
|
|
AddInterfaceAsDefaultSourceAddresss(kClientAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
|
|
// Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN
|
|
// candidate.
|
|
CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kClientAddr.ipaddr(),
|
|
rtc::IPAddress(), rtc::IPAddress());
|
|
}
|
|
|
|
// Test that when adapter enumeration is disabled, with
|
|
// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints behind a
|
|
// NAT, there is only one STUN candidate.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
TestDisableAdapterEnumerationWithNatLocalhostCandidateDisabled) {
|
|
ResetWithStunServerAndNat(kStunAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
|
|
// Expect to see 2 ports: STUN and TCP ports, and single STUN candidate.
|
|
CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kNatUdpAddr.ipaddr(),
|
|
rtc::IPAddress(), rtc::IPAddress());
|
|
}
|
|
|
|
// Test that we disable relay over UDP, and only TCP is used when connecting to
|
|
// the relay server.
|
|
TEST_F(BasicPortAllocatorTest, TestDisableUdpTurn) {
|
|
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
|
|
AddInterface(kClientAddr);
|
|
ResetWithStunServerAndNat(kStunAddr);
|
|
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->set_flags(PORTALLOCATOR_DISABLE_UDP_RELAY |
|
|
PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
|
|
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
|
|
// Expect to see 2 ports and 2 candidates - TURN/TCP and TCP ports, TCP and
|
|
// TURN/TCP candidates.
|
|
EXPECT_EQ(2U, ports_.size());
|
|
EXPECT_EQ(2U, candidates_.size());
|
|
Candidate turn_candidate;
|
|
EXPECT_TRUE(FindCandidate(candidates_, IceCandidateType::kRelay, "udp",
|
|
kTurnUdpExtAddr, &turn_candidate));
|
|
// The TURN candidate should use TCP to contact the TURN server.
|
|
EXPECT_EQ(TCP_PROTOCOL_NAME, turn_candidate.relay_protocol());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
|
|
}
|
|
|
|
// Test that we can get OnCandidatesAllocationDone callback when all the ports
|
|
// are disabled.
|
|
TEST_F(BasicPortAllocatorTest, TestDisableAllPorts) {
|
|
AddInterface(kClientAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->set_flags(PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN |
|
|
PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP);
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);
|
|
EXPECT_EQ(0U, candidates_.size());
|
|
}
|
|
|
|
// Test that we don't crash or malfunction if we can't create UDP sockets.
|
|
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSockets) {
|
|
AddInterface(kClientAddr);
|
|
fss_->set_udp_sockets_enabled(false);
|
|
ASSERT_TRUE(CreateSession(1));
|
|
session_->StartGettingPorts();
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(1U, candidates_.size());
|
|
EXPECT_EQ(1U, ports_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
|
|
}
|
|
|
|
// Test that we don't crash or malfunction if we can't create UDP sockets or
|
|
// listen on TCP sockets. We still give out a local TCP address, since
|
|
// apparently this is needed for the remote side to accept our connection.
|
|
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSocketsNoTcpListen) {
|
|
AddInterface(kClientAddr);
|
|
fss_->set_udp_sockets_enabled(false);
|
|
fss_->set_tcp_listen_enabled(false);
|
|
ASSERT_TRUE(CreateSession(1));
|
|
session_->StartGettingPorts();
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(1U, candidates_.size());
|
|
EXPECT_EQ(1U, ports_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
|
|
}
|
|
|
|
// Test that we don't crash or malfunction if we can't create any sockets.
|
|
// TODO(deadbeef): Find a way to exit early here.
|
|
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoSockets) {
|
|
AddInterface(kClientAddr);
|
|
fss_->set_tcp_sockets_enabled(false);
|
|
fss_->set_udp_sockets_enabled(false);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
SIMULATED_WAIT(candidates_.size() > 0, 2000, fake_clock);
|
|
// TODO(deadbeef): Check candidate_allocation_done signal.
|
|
// In case of Relay, ports creation will succeed but sockets will fail.
|
|
// There is no error reporting from RelayEntry to handle this failure.
|
|
}
|
|
|
|
// Testing STUN timeout.
|
|
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpAllowed) {
|
|
fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr);
|
|
AddInterface(kClientAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
|
|
fake_clock);
|
|
EXPECT_EQ(2U, ports_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
|
|
// We wait at least for a full STUN timeout, which
|
|
// cricket::STUN_TOTAL_TIMEOUT seconds.
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
cricket::STUN_TOTAL_TIMEOUT, fake_clock);
|
|
// No additional (STUN) candidates.
|
|
EXPECT_EQ(2U, candidates_.size());
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, TestCandidatePriorityOfMultipleInterfaces) {
|
|
AddInterface(kClientAddr);
|
|
AddInterface(kClientAddr2);
|
|
// Allocating only host UDP ports. This is done purely for testing
|
|
// convenience.
|
|
allocator().set_flags(PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN |
|
|
PORTALLOCATOR_DISABLE_RELAY);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
ASSERT_EQ(2U, candidates_.size());
|
|
EXPECT_EQ(2U, ports_.size());
|
|
// Candidates priorities should be different.
|
|
EXPECT_NE(candidates_[0].priority(), candidates_[1].priority());
|
|
}
|
|
|
|
// Test to verify ICE restart process.
|
|
TEST_F(BasicPortAllocatorTest, TestGetAllPortsRestarts) {
|
|
AddInterface(kClientAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
EXPECT_EQ(3U, ports_.size());
|
|
// TODO(deadbeef): Extend this to verify ICE restart.
|
|
}
|
|
|
|
// Test that the allocator session uses the candidate filter it's created with,
|
|
// rather than the filter of its parent allocator.
|
|
// The filter of the allocator should only affect the next gathering phase,
|
|
// according to JSEP, which means the *next* allocator session returned.
|
|
TEST_F(BasicPortAllocatorTest, TestSessionUsesOwnCandidateFilter) {
|
|
AddInterface(kClientAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
// Set candidate filter *after* creating the session. Should have no effect.
|
|
allocator().SetCandidateFilter(CF_RELAY);
|
|
session_->StartGettingPorts();
|
|
// 7 candidates and 4 ports is what we would normally get (see the
|
|
// TestGetAllPorts* tests).
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
EXPECT_EQ(3U, ports_.size());
|
|
}
|
|
|
|
// Test ICE candidate filter mechanism with options Relay/Host/Reflexive.
|
|
// This test also verifies that when the allocator is only allowed to use
|
|
// relay (i.e. IceTransportsType is relay), the raddr is an empty
|
|
// address with the correct family. This is to prevent any local
|
|
// reflective address leakage in the sdp line.
|
|
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithRelayOnly) {
|
|
AddInterface(kClientAddr);
|
|
// GTURN is not configured here.
|
|
ResetWithTurnServersNoNat(kTurnUdpIntAddr, rtc::SocketAddress());
|
|
allocator().SetCandidateFilter(CF_RELAY);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kRelay, "udp",
|
|
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
|
|
|
|
EXPECT_EQ(1U, candidates_.size());
|
|
EXPECT_EQ(1U, ports_.size()); // Only Relay port will be in ready state.
|
|
EXPECT_TRUE(candidates_[0].is_relay());
|
|
EXPECT_EQ(
|
|
candidates_[0].related_address(),
|
|
rtc::EmptySocketAddressWithFamily(candidates_[0].address().family()));
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithHostOnly) {
|
|
AddInterface(kClientAddr);
|
|
allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
|
|
allocator().SetCandidateFilter(CF_HOST);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(2U, candidates_.size()); // Host UDP/TCP candidates only.
|
|
EXPECT_EQ(2U, ports_.size()); // UDP/TCP ports only.
|
|
for (const Candidate& candidate : candidates_) {
|
|
EXPECT_TRUE(candidate.is_local());
|
|
}
|
|
}
|
|
|
|
// Host is behind the NAT.
|
|
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnly) {
|
|
AddInterface(kPrivateAddr);
|
|
ResetWithStunServerAndNat(kStunAddr);
|
|
|
|
allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
|
|
allocator().SetCandidateFilter(CF_REFLEXIVE);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Host is behind NAT, no private address will be exposed. Hence only UDP
|
|
// port with STUN candidate will be sent outside.
|
|
EXPECT_EQ(1U, candidates_.size()); // Only STUN candidate.
|
|
EXPECT_EQ(1U, ports_.size()); // Only UDP port will be in ready state.
|
|
EXPECT_TRUE(candidates_[0].is_stun());
|
|
EXPECT_EQ(
|
|
candidates_[0].related_address(),
|
|
rtc::EmptySocketAddressWithFamily(candidates_[0].address().family()));
|
|
}
|
|
|
|
// Host is not behind the NAT.
|
|
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnlyAndNoNAT) {
|
|
AddInterface(kClientAddr);
|
|
allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
|
|
allocator().SetCandidateFilter(CF_REFLEXIVE);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Host has a public address, both UDP and TCP candidates will be exposed.
|
|
EXPECT_EQ(2U, candidates_.size()); // Local UDP + TCP candidate.
|
|
EXPECT_EQ(2U, ports_.size()); // UDP and TCP ports will be in ready state.
|
|
for (const Candidate& candidate : candidates_) {
|
|
EXPECT_TRUE(candidate.is_local());
|
|
}
|
|
}
|
|
|
|
// Test that we get the same ufrag and pwd for all candidates.
|
|
TEST_F(BasicPortAllocatorTest, TestEnableSharedUfrag) {
|
|
AddInterface(kClientAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kSrflx, "udp", kClientAddr));
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
|
|
EXPECT_EQ(3U, ports_.size());
|
|
for (const Candidate& candidate : candidates_) {
|
|
EXPECT_EQ(kIceUfrag0, candidate.username());
|
|
EXPECT_EQ(kIcePwd0, candidate.password());
|
|
}
|
|
}
|
|
|
|
// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
|
|
// is allocated for udp and stun. Also verify there is only one candidate
|
|
// (local) if stun candidate is same as local candidate, which will be the case
|
|
// in a public network like the below test.
|
|
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNat) {
|
|
AddInterface(kClientAddr);
|
|
allocator_->set_flags(allocator().flags() |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
|
|
fake_clock);
|
|
EXPECT_EQ(2U, ports_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
}
|
|
|
|
// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
|
|
// is allocated for udp and stun. In this test we should expect both stun and
|
|
// local candidates as client behind a nat.
|
|
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNat) {
|
|
AddInterface(kClientAddr);
|
|
ResetWithStunServerAndNat(kStunAddr);
|
|
|
|
allocator_->set_flags(allocator().flags() |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
|
|
fake_clock);
|
|
ASSERT_EQ(2U, ports_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kSrflx, "udp",
|
|
rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
}
|
|
|
|
// Test TURN port in shared socket mode with UDP and TCP TURN server addresses.
|
|
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNatUsingTurn) {
|
|
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
|
|
AddInterface(kClientAddr);
|
|
allocator_.reset(new BasicPortAllocator(&network_manager_, &socket_factory_));
|
|
allocator_->Initialize();
|
|
|
|
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
|
|
|
|
allocator_->set_step_delay(kMinimumStepDelay);
|
|
allocator_->set_flags(allocator().flags() |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
ASSERT_EQ(3U, candidates_.size());
|
|
ASSERT_EQ(3U, ports_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kRelay, "udp",
|
|
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kRelay, "udp",
|
|
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
|
|
}
|
|
|
|
// Test that if the turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN
|
|
// port will not be used if UDP TurnPort is used, given that TCP TURN port
|
|
// becomes ready first.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
TestUdpTurnPortPrunesTcpTurnPortWithTcpPortReadyFirst) {
|
|
// UDP has longer delay than TCP so that TCP TURN port becomes ready first.
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100);
|
|
|
|
TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::PRUNE_BASED_ON_PRIORITY,
|
|
true /* tcp_pruned */);
|
|
}
|
|
|
|
// Test that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN port
|
|
// will not be used if UDP TurnPort is used, given that UDP TURN port becomes
|
|
// ready first.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
TestUdpTurnPortPrunesTcpTurnPortsWithUdpPortReadyFirst) {
|
|
// UDP has shorter delay than TCP so that UDP TURN port becomes ready first.
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200);
|
|
|
|
TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::PRUNE_BASED_ON_PRIORITY,
|
|
true /* tcp_pruned */);
|
|
}
|
|
|
|
// Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port
|
|
// will be kept regardless of the priority.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
TestUdpTurnPortPrunesTcpTurnPortIfUdpReadyFirst) {
|
|
// UDP has shorter delay than TCP so that UDP TURN port becomes ready first.
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200);
|
|
|
|
TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::KEEP_FIRST_READY,
|
|
true /* tcp_pruned */);
|
|
}
|
|
|
|
// Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port
|
|
// will be kept regardless of the priority.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
TestTcpTurnPortPrunesUdpTurnPortIfTcpReadyFirst) {
|
|
// UDP has longer delay than TCP so that TCP TURN port becomes ready first.
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100);
|
|
|
|
TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::KEEP_FIRST_READY,
|
|
false /* tcp_pruned */);
|
|
}
|
|
|
|
// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4
|
|
// TurnPort will not be used if IPv6 TurnPort is used, given that IPv4 TURN port
|
|
// becomes ready first.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
TestIPv6TurnPortPrunesIPv4TurnPortWithIPv4PortReadyFirst) {
|
|
// IPv6 has longer delay than IPv4, so that IPv4 TURN port becomes ready
|
|
// first.
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 200);
|
|
|
|
TestIPv6TurnPortPrunesIPv4TurnPort();
|
|
}
|
|
|
|
// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4
|
|
// TurnPort will not be used if IPv6 TurnPort is used, given that IPv6 TURN port
|
|
// becomes ready first.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
TestIPv6TurnPortPrunesIPv4TurnPortWithIPv6PortReadyFirst) {
|
|
// IPv6 has longer delay than IPv4, so that IPv6 TURN port becomes ready
|
|
// first.
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 100);
|
|
|
|
TestIPv6TurnPortPrunesIPv4TurnPort();
|
|
}
|
|
|
|
// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network
|
|
// interface will has its own set of TurnPorts based on their priorities, in the
|
|
// default case where no transit delay is set.
|
|
TEST_F(BasicPortAllocatorTest, TestEachInterfaceHasItsOwnTurnPortsNoDelay) {
|
|
TestEachInterfaceHasItsOwnTurnPorts();
|
|
}
|
|
|
|
// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network
|
|
// interface will has its own set of TurnPorts based on their priorities, given
|
|
// that IPv4/TCP TURN port becomes ready first.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
TestEachInterfaceHasItsOwnTurnPortsWithTcpIPv4ReadyFirst) {
|
|
// IPv6/UDP have longer delay than IPv4/TCP, so that IPv4/TCP TURN port
|
|
// becomes ready last.
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 10);
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntIPv6Addr, 20);
|
|
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 300);
|
|
|
|
TestEachInterfaceHasItsOwnTurnPorts();
|
|
}
|
|
|
|
// Testing DNS resolve for the TURN server, this will test AllocationSequence
|
|
// handling the unresolved address signal from TurnPort.
|
|
// TODO(pthatcher): Make this test work with SIMULATED_WAIT. It
|
|
// appears that it doesn't currently because of the DNS look up not
|
|
// using the fake clock.
|
|
TEST_F(BasicPortAllocatorTestWithRealClock,
|
|
TestSharedSocketWithServerAddressResolve) {
|
|
// This test relies on a real query for "localhost", so it won't work on an
|
|
// IPv6-only machine.
|
|
MAYBE_SKIP_IPV4;
|
|
turn_server_.AddInternalSocket(rtc::SocketAddress("127.0.0.1", 3478),
|
|
PROTO_UDP);
|
|
AddInterface(kClientAddr);
|
|
allocator_.reset(new BasicPortAllocator(&network_manager_, &socket_factory_));
|
|
allocator_->Initialize();
|
|
RelayServerConfig turn_server;
|
|
RelayCredentials credentials(kTurnUsername, kTurnPassword);
|
|
turn_server.credentials = credentials;
|
|
turn_server.ports.push_back(
|
|
ProtocolAddress(rtc::SocketAddress("localhost", 3478), PROTO_UDP));
|
|
allocator_->AddTurnServerForTesting(turn_server);
|
|
|
|
allocator_->set_step_delay(kMinimumStepDelay);
|
|
allocator_->set_flags(allocator().flags() |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
|
|
EXPECT_EQ_WAIT(2U, ports_.size(), kDefaultAllocationTimeout);
|
|
}
|
|
|
|
// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
|
|
// is allocated for udp/stun/turn. In this test we should expect all local,
|
|
// stun and turn candidates.
|
|
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurn) {
|
|
AddInterface(kClientAddr);
|
|
ResetWithStunServerAndNat(kStunAddr);
|
|
|
|
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
|
|
|
|
allocator_->set_flags(allocator().flags() |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
ASSERT_EQ(2U, ports_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kSrflx, "udp",
|
|
rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kRelay, "udp",
|
|
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Local port will be created first and then TURN port.
|
|
// TODO(deadbeef): This isn't something the BasicPortAllocator API contract
|
|
// guarantees...
|
|
EXPECT_EQ(2U, ports_[0]->Candidates().size());
|
|
EXPECT_EQ(1U, ports_[1]->Candidates().size());
|
|
}
|
|
|
|
// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled and the TURN
|
|
// server is also used as the STUN server, we should get 'local', 'stun', and
|
|
// 'relay' candidates.
|
|
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAsStun) {
|
|
AddInterface(kClientAddr);
|
|
// Use an empty SocketAddress to add a NAT without STUN server.
|
|
ResetWithStunServerAndNat(SocketAddress());
|
|
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
|
|
|
|
// Must set the step delay to 0 to make sure the relay allocation phase is
|
|
// started before the STUN candidates are obtained, so that the STUN binding
|
|
// response is processed when both StunPort and TurnPort exist to reproduce
|
|
// webrtc issue 3537.
|
|
allocator_->set_step_delay(0);
|
|
allocator_->set_flags(allocator().flags() |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
Candidate stun_candidate;
|
|
EXPECT_TRUE(FindCandidate(candidates_, IceCandidateType::kSrflx, "udp",
|
|
rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0),
|
|
&stun_candidate));
|
|
EXPECT_TRUE(HasCandidateWithRelatedAddr(
|
|
candidates_, IceCandidateType::kRelay, "udp",
|
|
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
|
|
stun_candidate.address()));
|
|
|
|
// Local port will be created first and then TURN port.
|
|
// TODO(deadbeef): This isn't something the BasicPortAllocator API contract
|
|
// guarantees...
|
|
EXPECT_EQ(2U, ports_[0]->Candidates().size());
|
|
EXPECT_EQ(1U, ports_[1]->Candidates().size());
|
|
}
|
|
|
|
// Test that when only a TCP TURN server is available, we do NOT use it as
|
|
// a UDP STUN server, as this could leak our IP address. Thus we should only
|
|
// expect two ports, a UDPPort and TurnPort.
|
|
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnTcpOnly) {
|
|
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
|
|
AddInterface(kClientAddr);
|
|
ResetWithStunServerAndNat(rtc::SocketAddress());
|
|
AddTurnServers(rtc::SocketAddress(), kTurnTcpIntAddr);
|
|
|
|
allocator_->set_flags(allocator().flags() |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(2U, candidates_.size());
|
|
ASSERT_EQ(2U, ports_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kRelay, "udp",
|
|
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
|
|
EXPECT_EQ(1U, ports_[0]->Candidates().size());
|
|
EXPECT_EQ(1U, ports_[1]->Candidates().size());
|
|
}
|
|
|
|
// Test that even when PORTALLOCATOR_ENABLE_SHARED_SOCKET is NOT enabled, the
|
|
// TURN server is used as the STUN server and we get 'local', 'stun', and
|
|
// 'relay' candidates.
|
|
// TODO(deadbeef): Remove this test when support for non-shared socket mode
|
|
// is removed.
|
|
TEST_F(BasicPortAllocatorTest, TestNonSharedSocketWithNatUsingTurnAsStun) {
|
|
AddInterface(kClientAddr);
|
|
// Use an empty SocketAddress to add a NAT without STUN server.
|
|
ResetWithStunServerAndNat(SocketAddress());
|
|
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
|
|
|
|
allocator_->set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_TCP);
|
|
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
ASSERT_EQ(3U, ports_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
Candidate stun_candidate;
|
|
EXPECT_TRUE(FindCandidate(candidates_, IceCandidateType::kSrflx, "udp",
|
|
rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0),
|
|
&stun_candidate));
|
|
Candidate turn_candidate;
|
|
EXPECT_TRUE(FindCandidate(candidates_, IceCandidateType::kRelay, "udp",
|
|
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
|
|
&turn_candidate));
|
|
// Not using shared socket, so the STUN request's server reflexive address
|
|
// should be different than the TURN request's server reflexive address.
|
|
EXPECT_NE(turn_candidate.related_address(), stun_candidate.address());
|
|
|
|
EXPECT_EQ(1U, ports_[0]->Candidates().size());
|
|
EXPECT_EQ(1U, ports_[1]->Candidates().size());
|
|
EXPECT_EQ(1U, ports_[2]->Candidates().size());
|
|
}
|
|
|
|
// Test that even when both a STUN and TURN server are configured, the TURN
|
|
// server is used as a STUN server and we get a 'stun' candidate.
|
|
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAndStun) {
|
|
AddInterface(kClientAddr);
|
|
// Configure with STUN server but destroy it, so we can ensure that it's
|
|
// the TURN server actually being used as a STUN server.
|
|
ResetWithStunServerAndNat(kStunAddr);
|
|
stun_server_.reset();
|
|
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
|
|
|
|
allocator_->set_flags(allocator().flags() |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
|
|
ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
|
|
fake_clock);
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
Candidate stun_candidate;
|
|
EXPECT_TRUE(FindCandidate(candidates_, IceCandidateType::kSrflx, "udp",
|
|
rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0),
|
|
&stun_candidate));
|
|
EXPECT_TRUE(HasCandidateWithRelatedAddr(
|
|
candidates_, IceCandidateType::kRelay, "udp",
|
|
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
|
|
stun_candidate.address()));
|
|
|
|
// Don't bother waiting for STUN timeout, since we already verified
|
|
// that we got a STUN candidate from the TURN server.
|
|
}
|
|
|
|
// This test verifies when PORTALLOCATOR_ENABLE_SHARED_SOCKET flag is enabled
|
|
// and fail to generate STUN candidate, local UDP candidate is generated
|
|
// properly.
|
|
TEST_F(BasicPortAllocatorTest, TestSharedSocketNoUdpAllowed) {
|
|
allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
|
|
PORTALLOCATOR_DISABLE_TCP |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
|
|
fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr);
|
|
AddInterface(kClientAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout,
|
|
fake_clock);
|
|
EXPECT_EQ(1U, candidates_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
// STUN timeout is 9.5sec. We need to wait to get candidate done signal.
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kStunTimeoutMs,
|
|
fake_clock);
|
|
EXPECT_EQ(1U, candidates_.size());
|
|
}
|
|
|
|
// Test that when the NetworkManager doesn't have permission to enumerate
|
|
// adapters, the PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION is specified
|
|
// automatically.
|
|
TEST_F(BasicPortAllocatorTest, TestNetworkPermissionBlocked) {
|
|
network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(),
|
|
rtc::IPAddress());
|
|
network_manager_.set_enumeration_permission(
|
|
rtc::NetworkManager::ENUMERATION_BLOCKED);
|
|
allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
|
|
PORTALLOCATOR_DISABLE_TCP |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
|
|
EXPECT_EQ(0U,
|
|
allocator_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
EXPECT_EQ(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
|
|
session_->StartGettingPorts();
|
|
EXPECT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout,
|
|
fake_clock);
|
|
EXPECT_EQ(1U, candidates_.size());
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kPrivateAddr));
|
|
EXPECT_NE(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
|
|
}
|
|
|
|
// This test verifies allocator can use IPv6 addresses along with IPv4.
|
|
TEST_F(BasicPortAllocatorTest, TestEnableIPv6Addresses) {
|
|
allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
|
|
PORTALLOCATOR_ENABLE_IPV6 |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
|
|
AddInterface(kClientIPv6Addr);
|
|
AddInterface(kClientAddr);
|
|
allocator_->set_step_delay(kMinimumStepDelay);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(4U, ports_.size());
|
|
EXPECT_EQ(4U, candidates_.size());
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr));
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "udp", kClientAddr));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "tcp",
|
|
kClientIPv6Addr));
|
|
EXPECT_TRUE(
|
|
HasCandidate(candidates_, IceCandidateType::kHost, "tcp", kClientAddr));
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, TestStopGettingPorts) {
|
|
AddInterface(kClientAddr);
|
|
allocator_->set_step_delay(kDefaultStepDelay);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
|
|
EXPECT_EQ(2U, ports_.size());
|
|
session_->StopGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);
|
|
|
|
// After stopping getting ports, adding a new interface will not start
|
|
// getting ports again.
|
|
allocator_->set_step_delay(kMinimumStepDelay);
|
|
candidates_.clear();
|
|
ports_.clear();
|
|
candidate_allocation_done_ = false;
|
|
network_manager_.AddInterface(kClientAddr2);
|
|
SIMULATED_WAIT(false, 1000, fake_clock);
|
|
EXPECT_EQ(0U, candidates_.size());
|
|
EXPECT_EQ(0U, ports_.size());
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, TestClearGettingPorts) {
|
|
AddInterface(kClientAddr);
|
|
allocator_->set_step_delay(kDefaultStepDelay);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
|
|
EXPECT_EQ(2U, ports_.size());
|
|
session_->ClearGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);
|
|
|
|
// After clearing getting ports, adding a new interface will start getting
|
|
// ports again.
|
|
allocator_->set_step_delay(kMinimumStepDelay);
|
|
candidates_.clear();
|
|
ports_.clear();
|
|
candidate_allocation_done_ = false;
|
|
network_manager_.AddInterface(kClientAddr2);
|
|
ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
|
|
EXPECT_EQ(2U, ports_.size());
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
}
|
|
|
|
// Test that the ports and candidates are updated with new ufrag/pwd/etc. when
|
|
// a pooled session is taken out of the pool.
|
|
TEST_F(BasicPortAllocatorTest, TestTransportInformationUpdated) {
|
|
AddInterface(kClientAddr);
|
|
int pool_size = 1;
|
|
allocator_->SetConfiguration(allocator_->stun_servers(),
|
|
allocator_->turn_servers(), pool_size,
|
|
webrtc::NO_PRUNE);
|
|
const PortAllocatorSession* peeked_session = allocator_->GetPooledSession();
|
|
ASSERT_NE(nullptr, peeked_session);
|
|
EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(),
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
// Expect that when TakePooledSession is called,
|
|
// UpdateTransportInformationInternal will be called and the
|
|
// BasicPortAllocatorSession will update the ufrag/pwd of ports and
|
|
// candidates.
|
|
session_ =
|
|
allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0);
|
|
ASSERT_NE(nullptr, session_.get());
|
|
auto ready_ports = session_->ReadyPorts();
|
|
auto candidates = session_->ReadyCandidates();
|
|
EXPECT_FALSE(ready_ports.empty());
|
|
EXPECT_FALSE(candidates.empty());
|
|
for (const PortInterface* port_interface : ready_ports) {
|
|
const Port* port = static_cast<const Port*>(port_interface);
|
|
EXPECT_EQ(kContentName, port->content_name());
|
|
EXPECT_EQ(1, port->component());
|
|
EXPECT_EQ(kIceUfrag0, port->username_fragment());
|
|
EXPECT_EQ(kIcePwd0, port->password());
|
|
}
|
|
for (const Candidate& candidate : candidates) {
|
|
EXPECT_EQ(1, candidate.component());
|
|
EXPECT_EQ(kIceUfrag0, candidate.username());
|
|
EXPECT_EQ(kIcePwd0, candidate.password());
|
|
}
|
|
}
|
|
|
|
// Test that a new candidate filter takes effect even on already-gathered
|
|
// candidates.
|
|
TEST_F(BasicPortAllocatorTest, TestSetCandidateFilterAfterCandidatesGathered) {
|
|
AddInterface(kClientAddr);
|
|
int pool_size = 1;
|
|
allocator_->SetConfiguration(allocator_->stun_servers(),
|
|
allocator_->turn_servers(), pool_size,
|
|
webrtc::NO_PRUNE);
|
|
const PortAllocatorSession* peeked_session = allocator_->GetPooledSession();
|
|
ASSERT_NE(nullptr, peeked_session);
|
|
EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(),
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
size_t initial_candidates_size = peeked_session->ReadyCandidates().size();
|
|
size_t initial_ports_size = peeked_session->ReadyPorts().size();
|
|
allocator_->SetCandidateFilter(CF_RELAY);
|
|
// Assume that when TakePooledSession is called, the candidate filter will be
|
|
// applied to the pooled session. This is tested by PortAllocatorTest.
|
|
session_ =
|
|
allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0);
|
|
ASSERT_NE(nullptr, session_.get());
|
|
auto candidates = session_->ReadyCandidates();
|
|
auto ports = session_->ReadyPorts();
|
|
// Sanity check that the number of candidates and ports decreased.
|
|
EXPECT_GT(initial_candidates_size, candidates.size());
|
|
EXPECT_GT(initial_ports_size, ports.size());
|
|
for (const PortInterface* port : ports) {
|
|
// Expect only relay ports.
|
|
EXPECT_EQ(RELAY_PORT_TYPE, port->Type());
|
|
}
|
|
for (const Candidate& candidate : candidates) {
|
|
// Expect only relay candidates now that the filter is applied.
|
|
EXPECT_TRUE(candidate.is_relay());
|
|
// Expect that the raddr is emptied due to the CF_RELAY filter.
|
|
EXPECT_EQ(candidate.related_address(),
|
|
rtc::EmptySocketAddressWithFamily(candidate.address().family()));
|
|
}
|
|
}
|
|
|
|
// Test that candidates that do not match a previous candidate filter can be
|
|
// surfaced if they match the new one after setting the filter value.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes) {
|
|
// We would still surface a host candidate if the IP is public, even though it
|
|
// is disabled by the candidate filter. See
|
|
// BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so
|
|
// that the srflx candidate is not equivalent to the host candidate.
|
|
AddInterface(kPrivateAddr);
|
|
ResetWithStunServerAndNat(kStunAddr);
|
|
|
|
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
|
|
|
|
allocator_->set_flags(allocator().flags() |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
|
|
allocator_->SetCandidateFilter(CF_NONE);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_TRUE(candidates_.empty());
|
|
EXPECT_TRUE(ports_.empty());
|
|
|
|
// Surface the relay candidate previously gathered but not signaled.
|
|
session_->SetCandidateFilter(CF_RELAY);
|
|
ASSERT_EQ_SIMULATED_WAIT(1u, candidates_.size(), kDefaultAllocationTimeout,
|
|
fake_clock);
|
|
EXPECT_TRUE(candidates_.back().is_relay());
|
|
EXPECT_EQ(1u, ports_.size());
|
|
|
|
// Surface the srflx candidate previously gathered but not signaled.
|
|
session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE);
|
|
ASSERT_EQ_SIMULATED_WAIT(2u, candidates_.size(), kDefaultAllocationTimeout,
|
|
fake_clock);
|
|
EXPECT_TRUE(candidates_.back().is_stun());
|
|
EXPECT_EQ(2u, ports_.size());
|
|
|
|
// Surface the srflx candidate previously gathered but not signaled.
|
|
session_->SetCandidateFilter(CF_ALL);
|
|
ASSERT_EQ_SIMULATED_WAIT(3u, candidates_.size(), kDefaultAllocationTimeout,
|
|
fake_clock);
|
|
EXPECT_TRUE(candidates_.back().is_local());
|
|
EXPECT_EQ(2u, ports_.size());
|
|
}
|
|
|
|
// This is a similar test as
|
|
// SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes, and we
|
|
// test the transitions for which the new filter value is not a super set of the
|
|
// previous value.
|
|
TEST_F(
|
|
BasicPortAllocatorTest,
|
|
SurfaceNewCandidatesAfterSetCandidateFilterToAllowDifferentCandidateTypes) {
|
|
// We would still surface a host candidate if the IP is public, even though it
|
|
// is disabled by the candidate filter. See
|
|
// BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so
|
|
// that the srflx candidate is not equivalent to the host candidate.
|
|
AddInterface(kPrivateAddr);
|
|
ResetWithStunServerAndNat(kStunAddr);
|
|
|
|
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
|
|
|
|
allocator_->set_flags(allocator().flags() |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
|
|
allocator_->SetCandidateFilter(CF_NONE);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_TRUE(candidates_.empty());
|
|
EXPECT_TRUE(ports_.empty());
|
|
|
|
// Surface the relay candidate previously gathered but not signaled.
|
|
session_->SetCandidateFilter(CF_RELAY);
|
|
EXPECT_EQ_SIMULATED_WAIT(1u, candidates_.size(), kDefaultAllocationTimeout,
|
|
fake_clock);
|
|
EXPECT_TRUE(candidates_.back().is_relay());
|
|
EXPECT_EQ(1u, ports_.size());
|
|
|
|
// Surface the srflx candidate previously gathered but not signaled.
|
|
session_->SetCandidateFilter(CF_REFLEXIVE);
|
|
EXPECT_EQ_SIMULATED_WAIT(2u, candidates_.size(), kDefaultAllocationTimeout,
|
|
fake_clock);
|
|
EXPECT_TRUE(candidates_.back().is_stun());
|
|
EXPECT_EQ(2u, ports_.size());
|
|
|
|
// Surface the host candidate previously gathered but not signaled.
|
|
session_->SetCandidateFilter(CF_HOST);
|
|
EXPECT_EQ_SIMULATED_WAIT(3u, candidates_.size(), kDefaultAllocationTimeout,
|
|
fake_clock);
|
|
EXPECT_TRUE(candidates_.back().is_local());
|
|
// We use a shared socket and cricket::UDPPort handles the srflx candidate.
|
|
EXPECT_EQ(2u, ports_.size());
|
|
}
|
|
|
|
// Test that after an allocation session has stopped getting ports, changing the
|
|
// candidate filter to allow new types of gathered candidates does not surface
|
|
// any candidate.
|
|
TEST_F(BasicPortAllocatorTest,
|
|
NoCandidateSurfacedWhenUpdatingCandidateFilterIfSessionStopped) {
|
|
AddInterface(kPrivateAddr);
|
|
ResetWithStunServerAndNat(kStunAddr);
|
|
|
|
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
|
|
|
|
allocator_->set_flags(allocator().flags() |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
|
|
PORTALLOCATOR_DISABLE_TCP);
|
|
|
|
allocator_->SetCandidateFilter(CF_NONE);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
auto test_invariants = [this]() {
|
|
EXPECT_TRUE(candidates_.empty());
|
|
EXPECT_TRUE(ports_.empty());
|
|
};
|
|
|
|
test_invariants();
|
|
|
|
session_->StopGettingPorts();
|
|
|
|
session_->SetCandidateFilter(CF_RELAY);
|
|
SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
|
|
test_invariants();
|
|
|
|
session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE);
|
|
SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
|
|
test_invariants();
|
|
|
|
session_->SetCandidateFilter(CF_ALL);
|
|
SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
|
|
test_invariants();
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, SetStunKeepaliveIntervalForPorts) {
|
|
const int pool_size = 1;
|
|
const int expected_stun_keepalive_interval = 123;
|
|
AddInterface(kClientAddr);
|
|
allocator_->SetConfiguration(
|
|
allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
|
|
webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
|
|
auto* pooled_session = allocator_->GetPooledSession();
|
|
ASSERT_NE(nullptr, pooled_session);
|
|
EXPECT_EQ_SIMULATED_WAIT(true, pooled_session->CandidatesAllocationDone(),
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session,
|
|
expected_stun_keepalive_interval);
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest,
|
|
ChangeStunKeepaliveIntervalForPortsAfterInitialConfig) {
|
|
const int pool_size = 1;
|
|
AddInterface(kClientAddr);
|
|
allocator_->SetConfiguration(
|
|
allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
|
|
webrtc::NO_PRUNE, nullptr, 123 /* stun keepalive interval */);
|
|
auto* pooled_session = allocator_->GetPooledSession();
|
|
ASSERT_NE(nullptr, pooled_session);
|
|
EXPECT_EQ_SIMULATED_WAIT(true, pooled_session->CandidatesAllocationDone(),
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
const int expected_stun_keepalive_interval = 321;
|
|
allocator_->SetConfiguration(
|
|
allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
|
|
webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
|
|
CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session,
|
|
expected_stun_keepalive_interval);
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest,
|
|
SetStunKeepaliveIntervalForPortsWithSharedSocket) {
|
|
const int pool_size = 1;
|
|
const int expected_stun_keepalive_interval = 123;
|
|
AddInterface(kClientAddr);
|
|
allocator_->set_flags(allocator().flags() |
|
|
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
|
|
allocator_->SetConfiguration(
|
|
allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
|
|
webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(),
|
|
expected_stun_keepalive_interval);
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest,
|
|
SetStunKeepaliveIntervalForPortsWithoutSharedSocket) {
|
|
const int pool_size = 1;
|
|
const int expected_stun_keepalive_interval = 123;
|
|
AddInterface(kClientAddr);
|
|
allocator_->set_flags(allocator().flags() &
|
|
~(PORTALLOCATOR_ENABLE_SHARED_SOCKET));
|
|
allocator_->SetConfiguration(
|
|
allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
|
|
webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(),
|
|
expected_stun_keepalive_interval);
|
|
}
|
|
|
|
// Test that when an mDNS responder is present, the local address of a host
|
|
// candidate is concealed by an mDNS hostname and the related address of a srflx
|
|
// candidate is set to 0.0.0.0 or ::0.
|
|
TEST_F(BasicPortAllocatorTest, HostCandidateAddressIsReplacedByHostname) {
|
|
// Default config uses GTURN and no NAT, so replace that with the
|
|
// desired setup (NAT, STUN server, TURN server, UDP/TCP).
|
|
ResetWithStunServerAndNat(kStunAddr);
|
|
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
|
|
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
|
|
AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
|
|
|
|
ASSERT_EQ(&network_manager_, allocator().network_manager());
|
|
network_manager_.set_mdns_responder(
|
|
std::make_unique<webrtc::FakeMdnsResponder>(rtc::Thread::Current()));
|
|
AddInterface(kClientAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(5u, candidates_.size());
|
|
int num_host_udp_candidates = 0;
|
|
int num_host_tcp_candidates = 0;
|
|
int num_srflx_candidates = 0;
|
|
int num_relay_candidates = 0;
|
|
for (const auto& candidate : candidates_) {
|
|
const auto& raddr = candidate.related_address();
|
|
|
|
if (candidate.is_local()) {
|
|
EXPECT_FALSE(candidate.address().hostname().empty());
|
|
EXPECT_TRUE(raddr.IsNil());
|
|
if (candidate.protocol() == UDP_PROTOCOL_NAME) {
|
|
++num_host_udp_candidates;
|
|
} else {
|
|
++num_host_tcp_candidates;
|
|
}
|
|
} else if (candidate.is_stun()) {
|
|
// For a srflx candidate, the related address should be set to 0.0.0.0 or
|
|
// ::0
|
|
EXPECT_TRUE(IPIsAny(raddr.ipaddr()));
|
|
EXPECT_EQ(raddr.port(), 0);
|
|
++num_srflx_candidates;
|
|
} else if (candidate.is_relay()) {
|
|
EXPECT_EQ(kNatUdpAddr.ipaddr(), raddr.ipaddr());
|
|
EXPECT_EQ(kNatUdpAddr.family(), raddr.family());
|
|
++num_relay_candidates;
|
|
} else {
|
|
// prflx candidates are not expected
|
|
FAIL();
|
|
}
|
|
}
|
|
EXPECT_EQ(1, num_host_udp_candidates);
|
|
EXPECT_EQ(1, num_host_tcp_candidates);
|
|
EXPECT_EQ(1, num_srflx_candidates);
|
|
EXPECT_EQ(2, num_relay_candidates);
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, TestUseTurnServerAsStunSever) {
|
|
ServerAddresses stun_servers;
|
|
stun_servers.insert(kStunAddr);
|
|
PortConfiguration port_config(stun_servers, "", "");
|
|
RelayServerConfig turn_servers =
|
|
CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
|
|
port_config.AddRelay(turn_servers);
|
|
|
|
EXPECT_EQ(2U, port_config.StunServers().size());
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, TestDoNotUseTurnServerAsStunSever) {
|
|
webrtc::test::ScopedKeyValueConfig field_trials(
|
|
"WebRTC-UseTurnServerAsStunServer/Disabled/");
|
|
ServerAddresses stun_servers;
|
|
stun_servers.insert(kStunAddr);
|
|
PortConfiguration port_config(stun_servers, "" /* user_name */,
|
|
"" /* password */, &field_trials);
|
|
RelayServerConfig turn_servers =
|
|
CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
|
|
port_config.AddRelay(turn_servers);
|
|
|
|
EXPECT_EQ(1U, port_config.StunServers().size());
|
|
}
|
|
|
|
// Test that candidates from different servers get assigned a unique local
|
|
// preference (the middle 16 bits of the priority)
|
|
TEST_F(BasicPortAllocatorTest, AssignsUniqueLocalPreferencetoRelayCandidates) {
|
|
allocator_->SetCandidateFilter(CF_RELAY);
|
|
allocator_->AddTurnServerForTesting(
|
|
CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
|
|
allocator_->AddTurnServerForTesting(
|
|
CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
|
|
allocator_->AddTurnServerForTesting(
|
|
CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
|
|
|
|
AddInterface(kClientAddr);
|
|
ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
EXPECT_EQ(3u, candidates_.size());
|
|
EXPECT_GT((candidates_[0].priority() >> 8) & 0xFFFF,
|
|
(candidates_[1].priority() >> 8) & 0xFFFF);
|
|
EXPECT_GT((candidates_[1].priority() >> 8) & 0xFFFF,
|
|
(candidates_[2].priority() >> 8) & 0xFFFF);
|
|
}
|
|
|
|
// Test that no more than allocator.max_ipv6_networks() IPv6 networks are used
|
|
// to gather candidates.
|
|
TEST_F(BasicPortAllocatorTest, TwoIPv6AreSelectedBecauseOfMaxIpv6Limit) {
|
|
rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
|
|
64, rtc::ADAPTER_TYPE_WIFI);
|
|
rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
|
|
kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
|
|
rtc::Network wifi2("wifi2", "Test NetworkAdapter 3",
|
|
kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI);
|
|
std::vector<const rtc::Network*> networks = {&wifi1, ðe1, &wifi2};
|
|
|
|
// Ensure that only 2 interfaces were selected.
|
|
EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks(
|
|
networks, /*max_ipv6_networks=*/2)
|
|
.size());
|
|
}
|
|
|
|
// Test that if the number of available IPv6 networks is less than
|
|
// allocator.max_ipv6_networks(), all IPv6 networks will be selected.
|
|
TEST_F(BasicPortAllocatorTest, AllIPv6AreSelected) {
|
|
rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
|
|
64, rtc::ADAPTER_TYPE_WIFI);
|
|
rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
|
|
kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
|
|
std::vector<const rtc::Network*> networks = {&wifi1, ðe1};
|
|
|
|
// Ensure that all 2 interfaces were selected.
|
|
EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks(
|
|
networks, /*max_ipv6_networks=*/3)
|
|
.size());
|
|
}
|
|
|
|
// If there are some IPv6 networks with different types, diversify IPv6
|
|
// networks.
|
|
TEST_F(BasicPortAllocatorTest, TwoIPv6WifiAreSelectedIfThereAreTwo) {
|
|
rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
|
|
64, rtc::ADAPTER_TYPE_WIFI);
|
|
rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
|
|
kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
|
|
rtc::Network ethe2("ethe2", "Test NetworkAdapter 3",
|
|
kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
|
|
rtc::Network unknown1("unknown1", "Test NetworkAdapter 4",
|
|
kClientIPv6Addr2.ipaddr(), 64,
|
|
rtc::ADAPTER_TYPE_UNKNOWN);
|
|
rtc::Network cell1("cell1", "Test NetworkAdapter 5",
|
|
kClientIPv6Addr3.ipaddr(), 64,
|
|
rtc::ADAPTER_TYPE_CELLULAR_4G);
|
|
std::vector<const rtc::Network*> networks = {&wifi1, ðe1, ðe2,
|
|
&unknown1, &cell1};
|
|
|
|
networks = BasicPortAllocatorSession::SelectIPv6Networks(
|
|
networks, /*max_ipv6_networks=*/4);
|
|
|
|
EXPECT_EQ(4U, networks.size());
|
|
// Ensure the expected 4 interfaces (wifi1, ethe1, cell1, unknown1) were
|
|
// selected.
|
|
EXPECT_TRUE(HasNetwork(networks, wifi1));
|
|
EXPECT_TRUE(HasNetwork(networks, ethe1));
|
|
EXPECT_TRUE(HasNetwork(networks, cell1));
|
|
EXPECT_TRUE(HasNetwork(networks, unknown1));
|
|
}
|
|
|
|
// If there are some IPv6 networks with the same type, select them because there
|
|
// is no other option.
|
|
TEST_F(BasicPortAllocatorTest, IPv6WithSameTypeAreSelectedIfNoOtherOption) {
|
|
// Add 5 cellular interfaces
|
|
rtc::Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
|
|
64, rtc::ADAPTER_TYPE_CELLULAR_2G);
|
|
rtc::Network cell2("cell2", "Test NetworkAdapter 2",
|
|
kClientIPv6Addr2.ipaddr(), 64,
|
|
rtc::ADAPTER_TYPE_CELLULAR_3G);
|
|
rtc::Network cell3("cell3", "Test NetworkAdapter 3",
|
|
kClientIPv6Addr3.ipaddr(), 64,
|
|
rtc::ADAPTER_TYPE_CELLULAR_4G);
|
|
rtc::Network cell4("cell4", "Test NetworkAdapter 4",
|
|
kClientIPv6Addr2.ipaddr(), 64,
|
|
rtc::ADAPTER_TYPE_CELLULAR_5G);
|
|
rtc::Network cell5("cell5", "Test NetworkAdapter 5",
|
|
kClientIPv6Addr3.ipaddr(), 64,
|
|
rtc::ADAPTER_TYPE_CELLULAR_3G);
|
|
std::vector<const rtc::Network*> networks = {&cell1, &cell2, &cell3, &cell4,
|
|
&cell5};
|
|
|
|
// Ensure that 4 interfaces were selected.
|
|
EXPECT_EQ(4U, BasicPortAllocatorSession::SelectIPv6Networks(
|
|
networks, /*max_ipv6_networks=*/4)
|
|
.size());
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, IPv6EthernetHasHigherPriorityThanWifi) {
|
|
rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
|
|
64, rtc::ADAPTER_TYPE_WIFI);
|
|
rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
|
|
kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
|
|
rtc::Network wifi2("wifi2", "Test NetworkAdapter 3",
|
|
kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI);
|
|
std::vector<const rtc::Network*> networks = {&wifi1, ðe1, &wifi2};
|
|
|
|
networks = BasicPortAllocatorSession::SelectIPv6Networks(
|
|
networks, /*max_ipv6_networks=*/1);
|
|
|
|
EXPECT_EQ(1U, networks.size());
|
|
// Ensure ethe1 was selected.
|
|
EXPECT_TRUE(HasNetwork(networks, ethe1));
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, IPv6EtherAndWifiHaveHigherPriorityThanOthers) {
|
|
rtc::Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
|
|
64, rtc::ADAPTER_TYPE_CELLULAR_3G);
|
|
rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
|
|
kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
|
|
rtc::Network wifi1("wifi1", "Test NetworkAdapter 3",
|
|
kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI);
|
|
rtc::Network unknown("unknown", "Test NetworkAdapter 4",
|
|
kClientIPv6Addr2.ipaddr(), 64,
|
|
rtc::ADAPTER_TYPE_UNKNOWN);
|
|
rtc::Network vpn1("vpn1", "Test NetworkAdapter 5", kClientIPv6Addr3.ipaddr(),
|
|
64, rtc::ADAPTER_TYPE_VPN);
|
|
std::vector<const rtc::Network*> networks = {&cell1, ðe1, &wifi1, &unknown,
|
|
&vpn1};
|
|
|
|
networks = BasicPortAllocatorSession::SelectIPv6Networks(
|
|
networks, /*max_ipv6_networks=*/2);
|
|
|
|
EXPECT_EQ(2U, networks.size());
|
|
// Ensure ethe1 and wifi1 were selected.
|
|
EXPECT_TRUE(HasNetwork(networks, wifi1));
|
|
EXPECT_TRUE(HasNetwork(networks, ethe1));
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, Select2DifferentIntefaces) {
|
|
allocator().set_max_ipv6_networks(2);
|
|
AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G);
|
|
|
|
// To simplify the test, only gather UDP host candidates.
|
|
allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
|
|
PORTALLOCATOR_DISABLE_STUN |
|
|
PORTALLOCATOR_DISABLE_RELAY |
|
|
PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
|
|
|
|
ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
|
|
EXPECT_EQ(2U, candidates_.size());
|
|
// ethe1 and wifi1 were selected.
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr3));
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, Select3DifferentIntefaces) {
|
|
allocator().set_max_ipv6_networks(3);
|
|
AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G);
|
|
|
|
// To simplify the test, only gather UDP host candidates.
|
|
allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
|
|
PORTALLOCATOR_DISABLE_STUN |
|
|
PORTALLOCATOR_DISABLE_RELAY |
|
|
PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
|
|
|
|
ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
|
|
EXPECT_EQ(3U, candidates_.size());
|
|
// ethe1, wifi1, and cell1 were selected.
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr3));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr5));
|
|
}
|
|
|
|
TEST_F(BasicPortAllocatorTest, Select4DifferentIntefaces) {
|
|
allocator().set_max_ipv6_networks(4);
|
|
AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
|
|
AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI);
|
|
AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G);
|
|
|
|
// To simplify the test, only gather UDP host candidates.
|
|
allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
|
|
PORTALLOCATOR_DISABLE_STUN |
|
|
PORTALLOCATOR_DISABLE_RELAY |
|
|
PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
|
|
|
|
ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
|
|
session_->StartGettingPorts();
|
|
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
|
|
kDefaultAllocationTimeout, fake_clock);
|
|
|
|
EXPECT_EQ(4U, candidates_.size());
|
|
// ethe1, ethe2, wifi1, and cell1 were selected.
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr2));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr3));
|
|
EXPECT_TRUE(HasCandidate(candidates_, IceCandidateType::kHost, "udp",
|
|
kClientIPv6Addr5));
|
|
}
|
|
|
|
} // namespace cricket
|