webrtc/modules/utility/source/process_thread_impl.cc
Markus Handell c89fdd716c Refactor the PlatformThread API.
PlatformThread's API is using old style function pointers, causes
casting, is unintuitive and forces artificial call sequences, and
is additionally possible to misuse in release mode.

Fix this by an API face lift:
1. The class is turned into a handle, which can be empty.
2. The only way of getting a non-empty PlatformThread is by calling
SpawnJoinable or SpawnDetached, clearly conveying the semantics to the
code reader.
3. Handles can be Finalized, which works differently for joinable and
detached threads:
  a) Handles for detached threads are simply closed where applicable.
  b) Joinable threads are joined before handles are closed.
4. The destructor finalizes handles. No explicit call is needed.

Fixed: webrtc:12727
Change-Id: Id00a0464edf4fc9e552b6a1fbb5d2e1280e88811
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/215075
Commit-Queue: Markus Handell <handellm@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Reviewed-by: Tommi <tommi@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#33923}
2021-05-05 09:59:07 +00:00

297 lines
8.4 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/utility/source/process_thread_impl.h"
#include <string>
#include "modules/include/module.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/trace_event.h"
namespace webrtc {
namespace {
// We use this constant internally to signal that a module has requested
// a callback right away. When this is set, no call to TimeUntilNextProcess
// should be made, but Process() should be called directly.
const int64_t kCallProcessImmediately = -1;
int64_t GetNextCallbackTime(Module* module, int64_t time_now) {
int64_t interval = module->TimeUntilNextProcess();
if (interval < 0) {
// Falling behind, we should call the callback now.
return time_now;
}
return time_now + interval;
}
} // namespace
ProcessThread::~ProcessThread() {}
// static
std::unique_ptr<ProcessThread> ProcessThread::Create(const char* thread_name) {
return std::unique_ptr<ProcessThread>(new ProcessThreadImpl(thread_name));
}
ProcessThreadImpl::ProcessThreadImpl(const char* thread_name)
: stop_(false), thread_name_(thread_name) {}
ProcessThreadImpl::~ProcessThreadImpl() {
RTC_DCHECK(thread_checker_.IsCurrent());
RTC_DCHECK(!stop_);
while (!delayed_tasks_.empty()) {
delete delayed_tasks_.top().task;
delayed_tasks_.pop();
}
while (!queue_.empty()) {
delete queue_.front();
queue_.pop();
}
}
void ProcessThreadImpl::Delete() {
RTC_LOG(LS_WARNING) << "Process thread " << thread_name_
<< " is destroyed as a TaskQueue.";
Stop();
delete this;
}
// Doesn't need locking, because the contending thread isn't running.
void ProcessThreadImpl::Start() RTC_NO_THREAD_SAFETY_ANALYSIS {
RTC_DCHECK(thread_checker_.IsCurrent());
RTC_DCHECK(thread_.empty());
if (!thread_.empty())
return;
RTC_DCHECK(!stop_);
for (ModuleCallback& m : modules_)
m.module->ProcessThreadAttached(this);
thread_ = rtc::PlatformThread::SpawnJoinable(
[this] {
CurrentTaskQueueSetter set_current(this);
while (Process()) {
}
},
thread_name_);
}
void ProcessThreadImpl::Stop() {
RTC_DCHECK(thread_checker_.IsCurrent());
if (thread_.empty())
return;
{
// Need to take lock, for synchronization with `thread_`.
MutexLock lock(&mutex_);
stop_ = true;
}
wake_up_.Set();
thread_.Finalize();
StopNoLocks();
}
// No locking needed, since this is called after the contending thread is
// stopped.
void ProcessThreadImpl::StopNoLocks() RTC_NO_THREAD_SAFETY_ANALYSIS {
RTC_DCHECK(thread_.empty());
stop_ = false;
for (ModuleCallback& m : modules_)
m.module->ProcessThreadAttached(nullptr);
}
void ProcessThreadImpl::WakeUp(Module* module) {
// Allowed to be called on any thread.
auto holds_mutex = [this] {
if (!IsCurrent()) {
return false;
}
RTC_DCHECK_RUN_ON(this);
return holds_mutex_;
};
if (holds_mutex()) {
// Avoid locking if called on the ProcessThread, via a module's Process),
WakeUpNoLocks(module);
} else {
MutexLock lock(&mutex_);
WakeUpInternal(module);
}
wake_up_.Set();
}
// Must be called only indirectly from Process, which already holds the lock.
void ProcessThreadImpl::WakeUpNoLocks(Module* module)
RTC_NO_THREAD_SAFETY_ANALYSIS {
RTC_DCHECK_RUN_ON(this);
WakeUpInternal(module);
}
void ProcessThreadImpl::WakeUpInternal(Module* module) {
for (ModuleCallback& m : modules_) {
if (m.module == module)
m.next_callback = kCallProcessImmediately;
}
}
void ProcessThreadImpl::PostTask(std::unique_ptr<QueuedTask> task) {
// Allowed to be called on any thread, except from a module's Process method.
if (IsCurrent()) {
RTC_DCHECK_RUN_ON(this);
RTC_DCHECK(!holds_mutex_) << "Calling ProcessThread::PostTask from "
"Module::Process is not supported";
}
{
MutexLock lock(&mutex_);
queue_.push(task.release());
}
wake_up_.Set();
}
void ProcessThreadImpl::PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) {
int64_t run_at_ms = rtc::TimeMillis() + milliseconds;
bool recalculate_wakeup_time;
{
MutexLock lock(&mutex_);
recalculate_wakeup_time =
delayed_tasks_.empty() || run_at_ms < delayed_tasks_.top().run_at_ms;
delayed_tasks_.emplace(run_at_ms, std::move(task));
}
if (recalculate_wakeup_time) {
wake_up_.Set();
}
}
void ProcessThreadImpl::RegisterModule(Module* module,
const rtc::Location& from) {
RTC_DCHECK(thread_checker_.IsCurrent());
RTC_DCHECK(module) << from.ToString();
#if RTC_DCHECK_IS_ON
{
// Catch programmer error.
MutexLock lock(&mutex_);
for (const ModuleCallback& mc : modules_) {
RTC_DCHECK(mc.module != module)
<< "Already registered here: " << mc.location.ToString()
<< "\n"
"Now attempting from here: "
<< from.ToString();
}
}
#endif
// Now that we know the module isn't in the list, we'll call out to notify
// the module that it's attached to the worker thread. We don't hold
// the lock while we make this call.
if (!thread_.empty())
module->ProcessThreadAttached(this);
{
MutexLock lock(&mutex_);
modules_.push_back(ModuleCallback(module, from));
}
// Wake the thread calling ProcessThreadImpl::Process() to update the
// waiting time. The waiting time for the just registered module may be
// shorter than all other registered modules.
wake_up_.Set();
}
void ProcessThreadImpl::DeRegisterModule(Module* module) {
RTC_DCHECK(thread_checker_.IsCurrent());
RTC_DCHECK(module);
{
MutexLock lock(&mutex_);
modules_.remove_if(
[&module](const ModuleCallback& m) { return m.module == module; });
}
// Notify the module that it's been detached.
module->ProcessThreadAttached(nullptr);
}
bool ProcessThreadImpl::Process() {
TRACE_EVENT1("webrtc", "ProcessThreadImpl", "name", thread_name_);
int64_t now = rtc::TimeMillis();
int64_t next_checkpoint = now + (1000 * 60);
RTC_DCHECK_RUN_ON(this);
{
MutexLock lock(&mutex_);
if (stop_)
return false;
for (ModuleCallback& m : modules_) {
// TODO(tommi): Would be good to measure the time TimeUntilNextProcess
// takes and dcheck if it takes too long (e.g. >=10ms). Ideally this
// operation should not require taking a lock, so querying all modules
// should run in a matter of nanoseconds.
if (m.next_callback == 0)
m.next_callback = GetNextCallbackTime(m.module, now);
// Set to true for the duration of the calls to modules' Process().
holds_mutex_ = true;
if (m.next_callback <= now ||
m.next_callback == kCallProcessImmediately) {
{
TRACE_EVENT2("webrtc", "ModuleProcess", "function",
m.location.function_name(), "file",
m.location.file_name());
m.module->Process();
}
// Use a new 'now' reference to calculate when the next callback
// should occur. We'll continue to use 'now' above for the baseline
// of calculating how long we should wait, to reduce variance.
int64_t new_now = rtc::TimeMillis();
m.next_callback = GetNextCallbackTime(m.module, new_now);
}
holds_mutex_ = false;
if (m.next_callback < next_checkpoint)
next_checkpoint = m.next_callback;
}
while (!delayed_tasks_.empty() && delayed_tasks_.top().run_at_ms <= now) {
queue_.push(delayed_tasks_.top().task);
delayed_tasks_.pop();
}
if (!delayed_tasks_.empty()) {
next_checkpoint =
std::min(next_checkpoint, delayed_tasks_.top().run_at_ms);
}
while (!queue_.empty()) {
QueuedTask* task = queue_.front();
queue_.pop();
mutex_.Unlock();
if (task->Run()) {
delete task;
}
mutex_.Lock();
}
}
int64_t time_to_wait = next_checkpoint - rtc::TimeMillis();
if (time_to_wait > 0)
wake_up_.Wait(static_cast<int>(time_to_wait));
return true;
}
} // namespace webrtc