webrtc/rtc_base/rate_limiter_unittest.cc
Markus Handell c89fdd716c Refactor the PlatformThread API.
PlatformThread's API is using old style function pointers, causes
casting, is unintuitive and forces artificial call sequences, and
is additionally possible to misuse in release mode.

Fix this by an API face lift:
1. The class is turned into a handle, which can be empty.
2. The only way of getting a non-empty PlatformThread is by calling
SpawnJoinable or SpawnDetached, clearly conveying the semantics to the
code reader.
3. Handles can be Finalized, which works differently for joinable and
detached threads:
  a) Handles for detached threads are simply closed where applicable.
  b) Joinable threads are joined before handles are closed.
4. The destructor finalizes handles. No explicit call is needed.

Fixed: webrtc:12727
Change-Id: Id00a0464edf4fc9e552b6a1fbb5d2e1280e88811
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/215075
Commit-Queue: Markus Handell <handellm@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Reviewed-by: Tommi <tommi@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#33923}
2021-05-05 09:59:07 +00:00

192 lines
6.3 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/rate_limiter.h"
#include <memory>
#include "rtc_base/event.h"
#include "rtc_base/platform_thread.h"
#include "system_wrappers/include/clock.h"
#include "test/gtest.h"
namespace webrtc {
class RateLimitTest : public ::testing::Test {
public:
RateLimitTest()
: clock_(0), rate_limiter(new RateLimiter(&clock_, kWindowSizeMs)) {}
~RateLimitTest() override {}
void SetUp() override { rate_limiter->SetMaxRate(kMaxRateBps); }
protected:
static constexpr int64_t kWindowSizeMs = 1000;
static constexpr uint32_t kMaxRateBps = 100000;
// Bytes needed to completely saturate the rate limiter.
static constexpr size_t kRateFillingBytes =
(kMaxRateBps * kWindowSizeMs) / (8 * 1000);
SimulatedClock clock_;
std::unique_ptr<RateLimiter> rate_limiter;
};
TEST_F(RateLimitTest, IncreasingMaxRate) {
// Fill rate, extend window to full size.
EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));
clock_.AdvanceTimeMilliseconds(kWindowSizeMs - 1);
EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));
// All rate consumed.
EXPECT_FALSE(rate_limiter->TryUseRate(1));
// Double the available rate and fill that too.
rate_limiter->SetMaxRate(kMaxRateBps * 2);
EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes));
// All rate consumed again.
EXPECT_FALSE(rate_limiter->TryUseRate(1));
}
TEST_F(RateLimitTest, DecreasingMaxRate) {
// Fill rate, extend window to full size.
EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));
clock_.AdvanceTimeMilliseconds(kWindowSizeMs - 1);
EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));
// All rate consumed.
EXPECT_FALSE(rate_limiter->TryUseRate(1));
// Halve the available rate and move window so half of the data falls out.
rate_limiter->SetMaxRate(kMaxRateBps / 2);
clock_.AdvanceTimeMilliseconds(1);
// All rate still consumed.
EXPECT_FALSE(rate_limiter->TryUseRate(1));
}
TEST_F(RateLimitTest, ChangingWindowSize) {
// Fill rate, extend window to full size.
EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));
clock_.AdvanceTimeMilliseconds(kWindowSizeMs - 1);
EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));
// All rate consumed.
EXPECT_FALSE(rate_limiter->TryUseRate(1));
// Decrease window size so half of the data falls out.
rate_limiter->SetWindowSize(kWindowSizeMs / 2);
// Average rate should still be the same, so rate is still all consumed.
EXPECT_FALSE(rate_limiter->TryUseRate(1));
// Increase window size again. Now the rate is only half used (removed data
// points don't come back to life).
rate_limiter->SetWindowSize(kWindowSizeMs);
EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));
// All rate consumed again.
EXPECT_FALSE(rate_limiter->TryUseRate(1));
}
TEST_F(RateLimitTest, SingleUsageAlwaysOk) {
// Using more bytes than can fit in a window is OK for a single packet.
EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes + 1));
}
TEST_F(RateLimitTest, WindowSizeLimits) {
EXPECT_TRUE(rate_limiter->SetWindowSize(1));
EXPECT_FALSE(rate_limiter->SetWindowSize(0));
EXPECT_TRUE(rate_limiter->SetWindowSize(kWindowSizeMs));
EXPECT_FALSE(rate_limiter->SetWindowSize(kWindowSizeMs + 1));
}
static const int64_t kMaxTimeoutMs = 30000;
class ThreadTask {
public:
explicit ThreadTask(RateLimiter* rate_limiter)
: rate_limiter_(rate_limiter) {}
virtual ~ThreadTask() {}
void Run() {
start_signal_.Wait(kMaxTimeoutMs);
DoRun();
end_signal_.Set();
}
virtual void DoRun() = 0;
RateLimiter* const rate_limiter_;
rtc::Event start_signal_;
rtc::Event end_signal_;
};
TEST_F(RateLimitTest, MultiThreadedUsage) {
// Simple sanity test, with different threads calling the various methods.
// Runs a few simple tasks, each on its own thread, but coordinated with
// events so that they run in a serialized order. Intended to catch data
// races when run with tsan et al.
// Half window size, double rate -> same amount of bytes needed to fill rate.
class SetWindowSizeTask : public ThreadTask {
public:
explicit SetWindowSizeTask(RateLimiter* rate_limiter)
: ThreadTask(rate_limiter) {}
~SetWindowSizeTask() override {}
void DoRun() override {
EXPECT_TRUE(rate_limiter_->SetWindowSize(kWindowSizeMs / 2));
}
} set_window_size_task(rate_limiter.get());
auto thread1 = rtc::PlatformThread::SpawnJoinable(
[&set_window_size_task] { set_window_size_task.Run(); }, "Thread1");
class SetMaxRateTask : public ThreadTask {
public:
explicit SetMaxRateTask(RateLimiter* rate_limiter)
: ThreadTask(rate_limiter) {}
~SetMaxRateTask() override {}
void DoRun() override { rate_limiter_->SetMaxRate(kMaxRateBps * 2); }
} set_max_rate_task(rate_limiter.get());
auto thread2 = rtc::PlatformThread::SpawnJoinable(
[&set_max_rate_task] { set_max_rate_task.Run(); }, "Thread2");
class UseRateTask : public ThreadTask {
public:
UseRateTask(RateLimiter* rate_limiter, SimulatedClock* clock)
: ThreadTask(rate_limiter), clock_(clock) {}
~UseRateTask() override {}
void DoRun() override {
EXPECT_TRUE(rate_limiter_->TryUseRate(kRateFillingBytes / 2));
clock_->AdvanceTimeMilliseconds((kWindowSizeMs / 2) - 1);
EXPECT_TRUE(rate_limiter_->TryUseRate(kRateFillingBytes / 2));
}
SimulatedClock* const clock_;
} use_rate_task(rate_limiter.get(), &clock_);
auto thread3 = rtc::PlatformThread::SpawnJoinable(
[&use_rate_task] { use_rate_task.Run(); }, "Thread3");
set_window_size_task.start_signal_.Set();
EXPECT_TRUE(set_window_size_task.end_signal_.Wait(kMaxTimeoutMs));
set_max_rate_task.start_signal_.Set();
EXPECT_TRUE(set_max_rate_task.end_signal_.Wait(kMaxTimeoutMs));
use_rate_task.start_signal_.Set();
EXPECT_TRUE(use_rate_task.end_signal_.Wait(kMaxTimeoutMs));
// All rate consumed.
EXPECT_FALSE(rate_limiter->TryUseRate(1));
}
} // namespace webrtc