webrtc/rtc_base/task_queue_win.cc
Markus Handell c89fdd716c Refactor the PlatformThread API.
PlatformThread's API is using old style function pointers, causes
casting, is unintuitive and forces artificial call sequences, and
is additionally possible to misuse in release mode.

Fix this by an API face lift:
1. The class is turned into a handle, which can be empty.
2. The only way of getting a non-empty PlatformThread is by calling
SpawnJoinable or SpawnDetached, clearly conveying the semantics to the
code reader.
3. Handles can be Finalized, which works differently for joinable and
detached threads:
  a) Handles for detached threads are simply closed where applicable.
  b) Joinable threads are joined before handles are closed.
4. The destructor finalizes handles. No explicit call is needed.

Fixed: webrtc:12727
Change-Id: Id00a0464edf4fc9e552b6a1fbb5d2e1280e88811
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/215075
Commit-Queue: Markus Handell <handellm@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Reviewed-by: Tommi <tommi@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#33923}
2021-05-05 09:59:07 +00:00

399 lines
12 KiB
C++

/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/task_queue_win.h"
// clang-format off
// clang formating would change include order.
// Include winsock2.h before including <windows.h> to maintain consistency with
// win32.h. To include win32.h directly, it must be broken out into its own
// build target.
#include <winsock2.h>
#include <windows.h>
#include <sal.h> // Must come after windows headers.
#include <mmsystem.h> // Must come after windows headers.
// clang-format on
#include <string.h>
#include <algorithm>
#include <memory>
#include <queue>
#include <utility>
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
#include "api/task_queue/queued_task.h"
#include "api/task_queue/task_queue_base.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "rtc_base/event.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/synchronization/mutex.h"
namespace webrtc {
namespace {
#define WM_RUN_TASK WM_USER + 1
#define WM_QUEUE_DELAYED_TASK WM_USER + 2
void CALLBACK InitializeQueueThread(ULONG_PTR param) {
MSG msg;
::PeekMessage(&msg, nullptr, WM_USER, WM_USER, PM_NOREMOVE);
rtc::Event* data = reinterpret_cast<rtc::Event*>(param);
data->Set();
}
rtc::ThreadPriority TaskQueuePriorityToThreadPriority(
TaskQueueFactory::Priority priority) {
switch (priority) {
case TaskQueueFactory::Priority::HIGH:
return rtc::ThreadPriority::kRealtime;
case TaskQueueFactory::Priority::LOW:
return rtc::ThreadPriority::kLow;
case TaskQueueFactory::Priority::NORMAL:
return rtc::ThreadPriority::kNormal;
}
}
int64_t GetTick() {
static const UINT kPeriod = 1;
bool high_res = (timeBeginPeriod(kPeriod) == TIMERR_NOERROR);
int64_t ret = rtc::TimeMillis();
if (high_res)
timeEndPeriod(kPeriod);
return ret;
}
class DelayedTaskInfo {
public:
// Default ctor needed to support priority_queue::pop().
DelayedTaskInfo() {}
DelayedTaskInfo(uint32_t milliseconds, std::unique_ptr<QueuedTask> task)
: due_time_(GetTick() + milliseconds), task_(std::move(task)) {}
DelayedTaskInfo(DelayedTaskInfo&&) = default;
// Implement for priority_queue.
bool operator>(const DelayedTaskInfo& other) const {
return due_time_ > other.due_time_;
}
// Required by priority_queue::pop().
DelayedTaskInfo& operator=(DelayedTaskInfo&& other) = default;
// See below for why this method is const.
void Run() const {
RTC_DCHECK(due_time_);
task_->Run() ? task_.reset() : static_cast<void>(task_.release());
}
int64_t due_time() const { return due_time_; }
private:
int64_t due_time_ = 0; // Absolute timestamp in milliseconds.
// |task| needs to be mutable because std::priority_queue::top() returns
// a const reference and a key in an ordered queue must not be changed.
// There are two basic workarounds, one using const_cast, which would also
// make the key (|due_time|), non-const and the other is to make the non-key
// (|task|), mutable.
// Because of this, the |task| variable is made private and can only be
// mutated by calling the |Run()| method.
mutable std::unique_ptr<QueuedTask> task_;
};
class MultimediaTimer {
public:
// Note: We create an event that requires manual reset.
MultimediaTimer() : event_(::CreateEvent(nullptr, true, false, nullptr)) {}
~MultimediaTimer() {
Cancel();
::CloseHandle(event_);
}
bool StartOneShotTimer(UINT delay_ms) {
RTC_DCHECK_EQ(0, timer_id_);
RTC_DCHECK(event_ != nullptr);
timer_id_ =
::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0,
TIME_ONESHOT | TIME_CALLBACK_EVENT_SET);
return timer_id_ != 0;
}
void Cancel() {
if (timer_id_) {
::timeKillEvent(timer_id_);
timer_id_ = 0;
}
// Now that timer is killed and not able to set the event, reset the event.
// Doing it in opposite order is racy because event may be set between
// event was reset and timer is killed leaving MultimediaTimer in surprising
// state where both event is set and timer is canceled.
::ResetEvent(event_);
}
HANDLE* event_for_wait() { return &event_; }
private:
HANDLE event_ = nullptr;
MMRESULT timer_id_ = 0;
RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer);
};
class TaskQueueWin : public TaskQueueBase {
public:
TaskQueueWin(absl::string_view queue_name, rtc::ThreadPriority priority);
~TaskQueueWin() override = default;
void Delete() override;
void PostTask(std::unique_ptr<QueuedTask> task) override;
void PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) override;
void RunPendingTasks();
private:
void RunThreadMain();
bool ProcessQueuedMessages();
void RunDueTasks();
void ScheduleNextTimer();
void CancelTimers();
// Since priority_queue<> by defult orders items in terms of
// largest->smallest, using std::less<>, and we want smallest->largest,
// we would like to use std::greater<> here. Alas it's only available in
// C++14 and later, so we roll our own compare template that that relies on
// operator<().
template <typename T>
struct greater {
bool operator()(const T& l, const T& r) { return l > r; }
};
MultimediaTimer timer_;
std::priority_queue<DelayedTaskInfo,
std::vector<DelayedTaskInfo>,
greater<DelayedTaskInfo>>
timer_tasks_;
UINT_PTR timer_id_ = 0;
rtc::PlatformThread thread_;
Mutex pending_lock_;
std::queue<std::unique_ptr<QueuedTask>> pending_
RTC_GUARDED_BY(pending_lock_);
HANDLE in_queue_;
};
TaskQueueWin::TaskQueueWin(absl::string_view queue_name,
rtc::ThreadPriority priority)
: in_queue_(::CreateEvent(nullptr, true, false, nullptr)) {
RTC_DCHECK(in_queue_);
thread_ = rtc::PlatformThread::SpawnJoinable(
[this] { RunThreadMain(); }, queue_name,
rtc::ThreadAttributes().SetPriority(priority));
rtc::Event event(false, false);
RTC_CHECK(thread_.QueueAPC(&InitializeQueueThread,
reinterpret_cast<ULONG_PTR>(&event)));
event.Wait(rtc::Event::kForever);
}
void TaskQueueWin::Delete() {
RTC_DCHECK(!IsCurrent());
RTC_CHECK(thread_.GetHandle() != absl::nullopt);
while (
!::PostThreadMessage(GetThreadId(*thread_.GetHandle()), WM_QUIT, 0, 0)) {
RTC_CHECK_EQ(ERROR_NOT_ENOUGH_QUOTA, ::GetLastError());
Sleep(1);
}
thread_.Finalize();
::CloseHandle(in_queue_);
delete this;
}
void TaskQueueWin::PostTask(std::unique_ptr<QueuedTask> task) {
MutexLock lock(&pending_lock_);
pending_.push(std::move(task));
::SetEvent(in_queue_);
}
void TaskQueueWin::PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) {
if (!milliseconds) {
PostTask(std::move(task));
return;
}
// TODO(tommi): Avoid this allocation. It is currently here since
// the timestamp stored in the task info object, is a 64bit timestamp
// and WPARAM is 32bits in 32bit builds. Otherwise, we could pass the
// task pointer and timestamp as LPARAM and WPARAM.
auto* task_info = new DelayedTaskInfo(milliseconds, std::move(task));
RTC_CHECK(thread_.GetHandle() != absl::nullopt);
if (!::PostThreadMessage(GetThreadId(*thread_.GetHandle()),
WM_QUEUE_DELAYED_TASK, 0,
reinterpret_cast<LPARAM>(task_info))) {
delete task_info;
}
}
void TaskQueueWin::RunPendingTasks() {
while (true) {
std::unique_ptr<QueuedTask> task;
{
MutexLock lock(&pending_lock_);
if (pending_.empty())
break;
task = std::move(pending_.front());
pending_.pop();
}
if (!task->Run())
task.release();
}
}
void TaskQueueWin::RunThreadMain() {
CurrentTaskQueueSetter set_current(this);
HANDLE handles[2] = {*timer_.event_for_wait(), in_queue_};
while (true) {
// Make sure we do an alertable wait as that's required to allow APCs to run
// (e.g. required for InitializeQueueThread and stopping the thread in
// PlatformThread).
DWORD result = ::MsgWaitForMultipleObjectsEx(
arraysize(handles), handles, INFINITE, QS_ALLEVENTS, MWMO_ALERTABLE);
RTC_CHECK_NE(WAIT_FAILED, result);
if (result == (WAIT_OBJECT_0 + 2)) {
// There are messages in the message queue that need to be handled.
if (!ProcessQueuedMessages())
break;
}
if (result == WAIT_OBJECT_0 ||
(!timer_tasks_.empty() &&
::WaitForSingleObject(*timer_.event_for_wait(), 0) == WAIT_OBJECT_0)) {
// The multimedia timer was signaled.
timer_.Cancel();
RunDueTasks();
ScheduleNextTimer();
}
if (result == (WAIT_OBJECT_0 + 1)) {
::ResetEvent(in_queue_);
RunPendingTasks();
}
}
}
bool TaskQueueWin::ProcessQueuedMessages() {
MSG msg = {};
// To protect against overly busy message queues, we limit the time
// we process tasks to a few milliseconds. If we don't do that, there's
// a chance that timer tasks won't ever run.
static const int kMaxTaskProcessingTimeMs = 500;
auto start = GetTick();
while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) &&
msg.message != WM_QUIT) {
if (!msg.hwnd) {
switch (msg.message) {
// TODO(tommi): Stop using this way of queueing tasks.
case WM_RUN_TASK: {
QueuedTask* task = reinterpret_cast<QueuedTask*>(msg.lParam);
if (task->Run())
delete task;
break;
}
case WM_QUEUE_DELAYED_TASK: {
std::unique_ptr<DelayedTaskInfo> info(
reinterpret_cast<DelayedTaskInfo*>(msg.lParam));
bool need_to_schedule_timers =
timer_tasks_.empty() ||
timer_tasks_.top().due_time() > info->due_time();
timer_tasks_.emplace(std::move(*info.get()));
if (need_to_schedule_timers) {
CancelTimers();
ScheduleNextTimer();
}
break;
}
case WM_TIMER: {
RTC_DCHECK_EQ(timer_id_, msg.wParam);
::KillTimer(nullptr, msg.wParam);
timer_id_ = 0;
RunDueTasks();
ScheduleNextTimer();
break;
}
default:
RTC_NOTREACHED();
break;
}
} else {
::TranslateMessage(&msg);
::DispatchMessage(&msg);
}
if (GetTick() > start + kMaxTaskProcessingTimeMs)
break;
}
return msg.message != WM_QUIT;
}
void TaskQueueWin::RunDueTasks() {
RTC_DCHECK(!timer_tasks_.empty());
auto now = GetTick();
do {
const auto& top = timer_tasks_.top();
if (top.due_time() > now)
break;
top.Run();
timer_tasks_.pop();
} while (!timer_tasks_.empty());
}
void TaskQueueWin::ScheduleNextTimer() {
RTC_DCHECK_EQ(timer_id_, 0);
if (timer_tasks_.empty())
return;
const auto& next_task = timer_tasks_.top();
int64_t delay_ms = std::max(0ll, next_task.due_time() - GetTick());
uint32_t milliseconds = rtc::dchecked_cast<uint32_t>(delay_ms);
if (!timer_.StartOneShotTimer(milliseconds))
timer_id_ = ::SetTimer(nullptr, 0, milliseconds, nullptr);
}
void TaskQueueWin::CancelTimers() {
timer_.Cancel();
if (timer_id_) {
::KillTimer(nullptr, timer_id_);
timer_id_ = 0;
}
}
class TaskQueueWinFactory : public TaskQueueFactory {
public:
std::unique_ptr<TaskQueueBase, TaskQueueDeleter> CreateTaskQueue(
absl::string_view name,
Priority priority) const override {
return std::unique_ptr<TaskQueueBase, TaskQueueDeleter>(
new TaskQueueWin(name, TaskQueuePriorityToThreadPriority(priority)));
}
};
} // namespace
std::unique_ptr<TaskQueueFactory> CreateTaskQueueWinFactory() {
return std::make_unique<TaskQueueWinFactory>();
}
} // namespace webrtc