mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 14:20:45 +01:00

Summary: The implementation of H264AnnexBBufferHasVideoFormatDescription was assuming that the SPS NALU is either the first NALU in the stream, or the second one, in case an AUD NALU is present in the first location. This change removes this assumption and instead searches for the SPS NALU, failing only if we can't find one. In addition, it cleans up some binary buffer manipulation code, using the the parsed NALU indices we already have in AnnexBBufferReader instead. Test Plan: Unit tests Change-Id: Id9715aa1d751f0ba1a1992def2b690607896df56 bug: webrtc:8922 Change-Id: Id9715aa1d751f0ba1a1992def2b690607896df56 Reviewed-on: https://webrtc-review.googlesource.com/49982 Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org> Reviewed-by: Kári Helgason <kthelgason@webrtc.org> Cr-Commit-Position: refs/heads/master@{#22205}
349 lines
12 KiB
C++
349 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*
|
|
*/
|
|
|
|
#include "sdk/objc/Framework/Classes/VideoToolbox/nalu_rewriter.h"
|
|
|
|
#include <CoreFoundation/CoreFoundation.h>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/logging.h"
|
|
|
|
namespace webrtc {
|
|
|
|
using H264::kAud;
|
|
using H264::kSps;
|
|
using H264::NaluIndex;
|
|
using H264::NaluType;
|
|
using H264::ParseNaluType;
|
|
|
|
const char kAnnexBHeaderBytes[4] = {0, 0, 0, 1};
|
|
const size_t kAvccHeaderByteSize = sizeof(uint32_t);
|
|
|
|
bool H264CMSampleBufferToAnnexBBuffer(
|
|
CMSampleBufferRef avcc_sample_buffer,
|
|
bool is_keyframe,
|
|
rtc::Buffer* annexb_buffer,
|
|
std::unique_ptr<RTPFragmentationHeader> *out_header) {
|
|
RTC_DCHECK(avcc_sample_buffer);
|
|
RTC_DCHECK(out_header);
|
|
out_header->reset(nullptr);
|
|
|
|
// Get format description from the sample buffer.
|
|
CMVideoFormatDescriptionRef description =
|
|
CMSampleBufferGetFormatDescription(avcc_sample_buffer);
|
|
if (description == nullptr) {
|
|
RTC_LOG(LS_ERROR) << "Failed to get sample buffer's description.";
|
|
return false;
|
|
}
|
|
|
|
// Get parameter set information.
|
|
int nalu_header_size = 0;
|
|
size_t param_set_count = 0;
|
|
OSStatus status = CMVideoFormatDescriptionGetH264ParameterSetAtIndex(
|
|
description, 0, nullptr, nullptr, ¶m_set_count, &nalu_header_size);
|
|
if (status != noErr) {
|
|
RTC_LOG(LS_ERROR) << "Failed to get parameter set.";
|
|
return false;
|
|
}
|
|
RTC_CHECK_EQ(nalu_header_size, kAvccHeaderByteSize);
|
|
RTC_DCHECK_EQ(param_set_count, 2);
|
|
|
|
// Truncate any previous data in the buffer without changing its capacity.
|
|
annexb_buffer->SetSize(0);
|
|
|
|
size_t nalu_offset = 0;
|
|
std::vector<size_t> frag_offsets;
|
|
std::vector<size_t> frag_lengths;
|
|
|
|
// Place all parameter sets at the front of buffer.
|
|
if (is_keyframe) {
|
|
size_t param_set_size = 0;
|
|
const uint8_t* param_set = nullptr;
|
|
for (size_t i = 0; i < param_set_count; ++i) {
|
|
status = CMVideoFormatDescriptionGetH264ParameterSetAtIndex(
|
|
description, i, ¶m_set, ¶m_set_size, nullptr, nullptr);
|
|
if (status != noErr) {
|
|
RTC_LOG(LS_ERROR) << "Failed to get parameter set.";
|
|
return false;
|
|
}
|
|
// Update buffer.
|
|
annexb_buffer->AppendData(kAnnexBHeaderBytes, sizeof(kAnnexBHeaderBytes));
|
|
annexb_buffer->AppendData(reinterpret_cast<const char*>(param_set),
|
|
param_set_size);
|
|
// Update fragmentation.
|
|
frag_offsets.push_back(nalu_offset + sizeof(kAnnexBHeaderBytes));
|
|
frag_lengths.push_back(param_set_size);
|
|
nalu_offset += sizeof(kAnnexBHeaderBytes) + param_set_size;
|
|
}
|
|
}
|
|
|
|
// Get block buffer from the sample buffer.
|
|
CMBlockBufferRef block_buffer =
|
|
CMSampleBufferGetDataBuffer(avcc_sample_buffer);
|
|
if (block_buffer == nullptr) {
|
|
RTC_LOG(LS_ERROR) << "Failed to get sample buffer's block buffer.";
|
|
return false;
|
|
}
|
|
CMBlockBufferRef contiguous_buffer = nullptr;
|
|
// Make sure block buffer is contiguous.
|
|
if (!CMBlockBufferIsRangeContiguous(block_buffer, 0, 0)) {
|
|
status = CMBlockBufferCreateContiguous(
|
|
nullptr, block_buffer, nullptr, nullptr, 0, 0, 0, &contiguous_buffer);
|
|
if (status != noErr) {
|
|
RTC_LOG(LS_ERROR) << "Failed to flatten non-contiguous block buffer: "
|
|
<< status;
|
|
return false;
|
|
}
|
|
} else {
|
|
contiguous_buffer = block_buffer;
|
|
// Retain to make cleanup easier.
|
|
CFRetain(contiguous_buffer);
|
|
block_buffer = nullptr;
|
|
}
|
|
|
|
// Now copy the actual data.
|
|
char* data_ptr = nullptr;
|
|
size_t block_buffer_size = CMBlockBufferGetDataLength(contiguous_buffer);
|
|
status = CMBlockBufferGetDataPointer(contiguous_buffer, 0, nullptr, nullptr,
|
|
&data_ptr);
|
|
if (status != noErr) {
|
|
RTC_LOG(LS_ERROR) << "Failed to get block buffer data.";
|
|
CFRelease(contiguous_buffer);
|
|
return false;
|
|
}
|
|
size_t bytes_remaining = block_buffer_size;
|
|
while (bytes_remaining > 0) {
|
|
// The size type here must match |nalu_header_size|, we expect 4 bytes.
|
|
// Read the length of the next packet of data. Must convert from big endian
|
|
// to host endian.
|
|
RTC_DCHECK_GE(bytes_remaining, (size_t)nalu_header_size);
|
|
uint32_t* uint32_data_ptr = reinterpret_cast<uint32_t*>(data_ptr);
|
|
uint32_t packet_size = CFSwapInt32BigToHost(*uint32_data_ptr);
|
|
// Update buffer.
|
|
annexb_buffer->AppendData(kAnnexBHeaderBytes, sizeof(kAnnexBHeaderBytes));
|
|
annexb_buffer->AppendData(data_ptr + nalu_header_size, packet_size);
|
|
// Update fragmentation.
|
|
frag_offsets.push_back(nalu_offset + sizeof(kAnnexBHeaderBytes));
|
|
frag_lengths.push_back(packet_size);
|
|
nalu_offset += sizeof(kAnnexBHeaderBytes) + packet_size;
|
|
|
|
size_t bytes_written = packet_size + sizeof(kAnnexBHeaderBytes);
|
|
bytes_remaining -= bytes_written;
|
|
data_ptr += bytes_written;
|
|
}
|
|
RTC_DCHECK_EQ(bytes_remaining, (size_t)0);
|
|
|
|
std::unique_ptr<RTPFragmentationHeader> header(new RTPFragmentationHeader());
|
|
header->VerifyAndAllocateFragmentationHeader(frag_offsets.size());
|
|
RTC_DCHECK_EQ(frag_lengths.size(), frag_offsets.size());
|
|
for (size_t i = 0; i < frag_offsets.size(); ++i) {
|
|
header->fragmentationOffset[i] = frag_offsets[i];
|
|
header->fragmentationLength[i] = frag_lengths[i];
|
|
header->fragmentationPlType[i] = 0;
|
|
header->fragmentationTimeDiff[i] = 0;
|
|
}
|
|
*out_header = std::move(header);
|
|
CFRelease(contiguous_buffer);
|
|
return true;
|
|
}
|
|
|
|
bool H264AnnexBBufferToCMSampleBuffer(const uint8_t* annexb_buffer,
|
|
size_t annexb_buffer_size,
|
|
CMVideoFormatDescriptionRef video_format,
|
|
CMSampleBufferRef* out_sample_buffer) {
|
|
RTC_DCHECK(annexb_buffer);
|
|
RTC_DCHECK(out_sample_buffer);
|
|
RTC_DCHECK(video_format);
|
|
*out_sample_buffer = nullptr;
|
|
|
|
AnnexBBufferReader reader(annexb_buffer, annexb_buffer_size);
|
|
if (reader.SeekToNextNaluOfType(kSps)) {
|
|
// Buffer contains an SPS NALU - skip it and the following PPS
|
|
const uint8_t* data;
|
|
size_t data_len;
|
|
if (!reader.ReadNalu(&data, &data_len)) {
|
|
RTC_LOG(LS_ERROR) << "Failed to read SPS";
|
|
return false;
|
|
}
|
|
if (!reader.ReadNalu(&data, &data_len)) {
|
|
RTC_LOG(LS_ERROR) << "Failed to read PPS";
|
|
return false;
|
|
}
|
|
} else {
|
|
// No SPS NALU - start reading from the first NALU in the buffer
|
|
reader.SeekToStart();
|
|
}
|
|
|
|
// Allocate memory as a block buffer.
|
|
// TODO(tkchin): figure out how to use a pool.
|
|
CMBlockBufferRef block_buffer = nullptr;
|
|
OSStatus status = CMBlockBufferCreateWithMemoryBlock(
|
|
nullptr, nullptr, reader.BytesRemaining(), nullptr, nullptr, 0,
|
|
reader.BytesRemaining(), kCMBlockBufferAssureMemoryNowFlag,
|
|
&block_buffer);
|
|
if (status != kCMBlockBufferNoErr) {
|
|
RTC_LOG(LS_ERROR) << "Failed to create block buffer.";
|
|
return false;
|
|
}
|
|
|
|
// Make sure block buffer is contiguous.
|
|
CMBlockBufferRef contiguous_buffer = nullptr;
|
|
if (!CMBlockBufferIsRangeContiguous(block_buffer, 0, 0)) {
|
|
status = CMBlockBufferCreateContiguous(
|
|
nullptr, block_buffer, nullptr, nullptr, 0, 0, 0, &contiguous_buffer);
|
|
if (status != noErr) {
|
|
RTC_LOG(LS_ERROR) << "Failed to flatten non-contiguous block buffer: "
|
|
<< status;
|
|
CFRelease(block_buffer);
|
|
return false;
|
|
}
|
|
} else {
|
|
contiguous_buffer = block_buffer;
|
|
block_buffer = nullptr;
|
|
}
|
|
|
|
// Get a raw pointer into allocated memory.
|
|
size_t block_buffer_size = 0;
|
|
char* data_ptr = nullptr;
|
|
status = CMBlockBufferGetDataPointer(contiguous_buffer, 0, nullptr,
|
|
&block_buffer_size, &data_ptr);
|
|
if (status != kCMBlockBufferNoErr) {
|
|
RTC_LOG(LS_ERROR) << "Failed to get block buffer data pointer.";
|
|
CFRelease(contiguous_buffer);
|
|
return false;
|
|
}
|
|
RTC_DCHECK(block_buffer_size == reader.BytesRemaining());
|
|
|
|
// Write Avcc NALUs into block buffer memory.
|
|
AvccBufferWriter writer(reinterpret_cast<uint8_t*>(data_ptr),
|
|
block_buffer_size);
|
|
while (reader.BytesRemaining() > 0) {
|
|
const uint8_t* nalu_data_ptr = nullptr;
|
|
size_t nalu_data_size = 0;
|
|
if (reader.ReadNalu(&nalu_data_ptr, &nalu_data_size)) {
|
|
writer.WriteNalu(nalu_data_ptr, nalu_data_size);
|
|
}
|
|
}
|
|
|
|
// Create sample buffer.
|
|
status = CMSampleBufferCreate(nullptr, contiguous_buffer, true, nullptr,
|
|
nullptr, video_format, 1, 0, nullptr, 0,
|
|
nullptr, out_sample_buffer);
|
|
if (status != noErr) {
|
|
RTC_LOG(LS_ERROR) << "Failed to create sample buffer.";
|
|
CFRelease(contiguous_buffer);
|
|
return false;
|
|
}
|
|
CFRelease(contiguous_buffer);
|
|
return true;
|
|
}
|
|
|
|
CMVideoFormatDescriptionRef CreateVideoFormatDescription(
|
|
const uint8_t* annexb_buffer,
|
|
size_t annexb_buffer_size) {
|
|
const uint8_t* param_set_ptrs[2] = {};
|
|
size_t param_set_sizes[2] = {};
|
|
AnnexBBufferReader reader(annexb_buffer, annexb_buffer_size);
|
|
// Skip everyting before the SPS, then read the SPS and PPS
|
|
if (!reader.SeekToNextNaluOfType(kSps)) {
|
|
return nullptr;
|
|
}
|
|
if (!reader.ReadNalu(¶m_set_ptrs[0], ¶m_set_sizes[0])) {
|
|
RTC_LOG(LS_ERROR) << "Failed to read SPS";
|
|
return nullptr;
|
|
}
|
|
if (!reader.ReadNalu(¶m_set_ptrs[1], ¶m_set_sizes[1])) {
|
|
RTC_LOG(LS_ERROR) << "Failed to read PPS";
|
|
return nullptr;
|
|
}
|
|
|
|
// Parse the SPS and PPS into a CMVideoFormatDescription.
|
|
CMVideoFormatDescriptionRef description = nullptr;
|
|
OSStatus status = CMVideoFormatDescriptionCreateFromH264ParameterSets(
|
|
kCFAllocatorDefault, 2, param_set_ptrs, param_set_sizes, 4, &description);
|
|
if (status != noErr) {
|
|
RTC_LOG(LS_ERROR) << "Failed to create video format description.";
|
|
return nullptr;
|
|
}
|
|
return description;
|
|
}
|
|
|
|
AnnexBBufferReader::AnnexBBufferReader(const uint8_t* annexb_buffer,
|
|
size_t length)
|
|
: start_(annexb_buffer), length_(length) {
|
|
RTC_DCHECK(annexb_buffer);
|
|
offsets_ = H264::FindNaluIndices(annexb_buffer, length);
|
|
offset_ = offsets_.begin();
|
|
}
|
|
|
|
bool AnnexBBufferReader::ReadNalu(const uint8_t** out_nalu,
|
|
size_t* out_length) {
|
|
RTC_DCHECK(out_nalu);
|
|
RTC_DCHECK(out_length);
|
|
*out_nalu = nullptr;
|
|
*out_length = 0;
|
|
|
|
if (offset_ == offsets_.end()) {
|
|
return false;
|
|
}
|
|
*out_nalu = start_ + offset_->payload_start_offset;
|
|
*out_length = offset_->payload_size;
|
|
++offset_;
|
|
return true;
|
|
}
|
|
|
|
size_t AnnexBBufferReader::BytesRemaining() const {
|
|
if (offset_ == offsets_.end()) {
|
|
return 0;
|
|
}
|
|
return length_ - offset_->start_offset;
|
|
}
|
|
|
|
void AnnexBBufferReader::SeekToStart() {
|
|
offset_ = offsets_.begin();
|
|
}
|
|
|
|
bool AnnexBBufferReader::SeekToNextNaluOfType(NaluType type) {
|
|
for (; offset_ != offsets_.end(); ++offset_) {
|
|
if (offset_->payload_size < 1)
|
|
continue;
|
|
if (ParseNaluType(*(start_ + offset_->payload_start_offset)) == type)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
AvccBufferWriter::AvccBufferWriter(uint8_t* const avcc_buffer, size_t length)
|
|
: start_(avcc_buffer), offset_(0), length_(length) {
|
|
RTC_DCHECK(avcc_buffer);
|
|
}
|
|
|
|
bool AvccBufferWriter::WriteNalu(const uint8_t* data, size_t data_size) {
|
|
// Check if we can write this length of data.
|
|
if (data_size + kAvccHeaderByteSize > BytesRemaining()) {
|
|
return false;
|
|
}
|
|
// Write length header, which needs to be big endian.
|
|
uint32_t big_endian_length = CFSwapInt32HostToBig(data_size);
|
|
memcpy(start_ + offset_, &big_endian_length, sizeof(big_endian_length));
|
|
offset_ += sizeof(big_endian_length);
|
|
// Write data.
|
|
memcpy(start_ + offset_, data, data_size);
|
|
offset_ += data_size;
|
|
return true;
|
|
}
|
|
|
|
size_t AvccBufferWriter::BytesRemaining() const {
|
|
return length_ - offset_;
|
|
}
|
|
|
|
} // namespace webrtc
|