webrtc/modules/audio_processing/test/audio_processing_simulator.cc
Per Åhgren cf4c872dbd APM: Make the GetStatistics call independent of the locks in APM
This CL changes the GetStatistics call in the audio processing module
(APM) to not aquire the render or capture locks in APM, while still
being thread-safe.
This change eliminates the risk of thread-priority inversion due to the
GetStatistics call.

Apart from the above the CL:
-Corrects the GetStatistics to not be const (it was const even though it
 aquired locks).
-Slightly changes the statistics reporting, so that the stats received
may be older than the most recent stats reported.

Bug: webrtc:11241
Change-Id: I00deb5507e004cbe6e4a19a8bad357491f86f4ab
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/163982
Reviewed-by: Sam Zackrisson <saza@webrtc.org>
Commit-Queue: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#30131}
2020-01-02 15:45:14 +00:00

557 lines
20 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/test/audio_processing_simulator.h"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "api/audio/echo_canceller3_config_json.h"
#include "api/audio/echo_canceller3_factory.h"
#include "common_audio/include/audio_util.h"
#include "modules/audio_processing/aec_dump/aec_dump_factory.h"
#include "modules/audio_processing/echo_control_mobile_impl.h"
#include "modules/audio_processing/include/audio_processing.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "modules/audio_processing/test/fake_recording_device.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/strings/json.h"
#include "rtc_base/strings/string_builder.h"
namespace webrtc {
namespace test {
namespace {
// Helper for reading JSON from a file and parsing it to an AEC3 configuration.
EchoCanceller3Config ReadAec3ConfigFromJsonFile(const std::string& filename) {
std::string json_string;
std::string s;
std::ifstream f(filename.c_str());
if (f.fail()) {
std::cout << "Failed to open the file " << filename << std::endl;
RTC_CHECK(false);
}
while (std::getline(f, s)) {
json_string += s;
}
bool parsing_successful;
EchoCanceller3Config cfg;
Aec3ConfigFromJsonString(json_string, &cfg, &parsing_successful);
if (!parsing_successful) {
std::cout << "Parsing of json string failed: " << std::endl
<< json_string << std::endl;
RTC_CHECK(false);
}
RTC_CHECK(EchoCanceller3Config::Validate(&cfg));
return cfg;
}
void CopyFromAudioFrame(const AudioFrame& src, ChannelBuffer<float>* dest) {
RTC_CHECK_EQ(src.num_channels_, dest->num_channels());
RTC_CHECK_EQ(src.samples_per_channel_, dest->num_frames());
// Copy the data from the input buffer.
std::vector<float> tmp(src.samples_per_channel_ * src.num_channels_);
S16ToFloat(src.data(), tmp.size(), tmp.data());
Deinterleave(tmp.data(), src.samples_per_channel_, src.num_channels_,
dest->channels());
}
std::string GetIndexedOutputWavFilename(const std::string& wav_name,
int counter) {
rtc::StringBuilder ss;
ss << wav_name.substr(0, wav_name.size() - 4) << "_" << counter
<< wav_name.substr(wav_name.size() - 4);
return ss.Release();
}
void WriteEchoLikelihoodGraphFileHeader(std::ofstream* output_file) {
(*output_file) << "import numpy as np" << std::endl
<< "import matplotlib.pyplot as plt" << std::endl
<< "y = np.array([";
}
void WriteEchoLikelihoodGraphFileFooter(std::ofstream* output_file) {
(*output_file) << "])" << std::endl
<< "if __name__ == '__main__':" << std::endl
<< " x = np.arange(len(y))*.01" << std::endl
<< " plt.plot(x, y)" << std::endl
<< " plt.ylabel('Echo likelihood')" << std::endl
<< " plt.xlabel('Time (s)')" << std::endl
<< " plt.show()" << std::endl;
}
// RAII class for execution time measurement. Updates the provided
// ApiCallStatistics based on the time between ScopedTimer creation and
// leaving the enclosing scope.
class ScopedTimer {
public:
ScopedTimer(ApiCallStatistics* api_call_statistics_,
ApiCallStatistics::CallType call_type)
: start_time_(rtc::TimeNanos()),
call_type_(call_type),
api_call_statistics_(api_call_statistics_) {}
~ScopedTimer() {
api_call_statistics_->Add(rtc::TimeNanos() - start_time_, call_type_);
}
private:
const int64_t start_time_;
const ApiCallStatistics::CallType call_type_;
ApiCallStatistics* const api_call_statistics_;
};
} // namespace
SimulationSettings::SimulationSettings() = default;
SimulationSettings::SimulationSettings(const SimulationSettings&) = default;
SimulationSettings::~SimulationSettings() = default;
void CopyToAudioFrame(const ChannelBuffer<float>& src, AudioFrame* dest) {
RTC_CHECK_EQ(src.num_channels(), dest->num_channels_);
RTC_CHECK_EQ(src.num_frames(), dest->samples_per_channel_);
int16_t* dest_data = dest->mutable_data();
for (size_t ch = 0; ch < dest->num_channels_; ++ch) {
for (size_t sample = 0; sample < dest->samples_per_channel_; ++sample) {
dest_data[sample * dest->num_channels_ + ch] =
src.channels()[ch][sample] * 32767;
}
}
}
AudioProcessingSimulator::AudioProcessingSimulator(
const SimulationSettings& settings,
std::unique_ptr<AudioProcessingBuilder> ap_builder)
: settings_(settings),
ap_builder_(ap_builder ? std::move(ap_builder)
: std::make_unique<AudioProcessingBuilder>()),
analog_mic_level_(settings.initial_mic_level),
fake_recording_device_(
settings.initial_mic_level,
settings_.simulate_mic_gain ? *settings.simulated_mic_kind : 0),
worker_queue_("file_writer_task_queue") {
RTC_CHECK(!settings_.dump_internal_data || WEBRTC_APM_DEBUG_DUMP == 1);
ApmDataDumper::SetActivated(settings_.dump_internal_data);
if (settings_.dump_internal_data_output_dir.has_value()) {
ApmDataDumper::SetOutputDirectory(
settings_.dump_internal_data_output_dir.value());
}
if (settings_.ed_graph_output_filename &&
!settings_.ed_graph_output_filename->empty()) {
residual_echo_likelihood_graph_writer_.open(
*settings_.ed_graph_output_filename);
RTC_CHECK(residual_echo_likelihood_graph_writer_.is_open());
WriteEchoLikelihoodGraphFileHeader(&residual_echo_likelihood_graph_writer_);
}
if (settings_.simulate_mic_gain)
RTC_LOG(LS_VERBOSE) << "Simulating analog mic gain";
}
AudioProcessingSimulator::~AudioProcessingSimulator() {
if (residual_echo_likelihood_graph_writer_.is_open()) {
WriteEchoLikelihoodGraphFileFooter(&residual_echo_likelihood_graph_writer_);
residual_echo_likelihood_graph_writer_.close();
}
}
void AudioProcessingSimulator::ProcessStream(bool fixed_interface) {
// Optionally use the fake recording device to simulate analog gain.
if (settings_.simulate_mic_gain) {
if (settings_.aec_dump_input_filename) {
// When the analog gain is simulated and an AEC dump is used as input, set
// the undo level to |aec_dump_mic_level_| to virtually restore the
// unmodified microphone signal level.
fake_recording_device_.SetUndoMicLevel(aec_dump_mic_level_);
}
if (fixed_interface) {
fake_recording_device_.SimulateAnalogGain(&fwd_frame_);
} else {
fake_recording_device_.SimulateAnalogGain(in_buf_.get());
}
// Notify the current mic level to AGC.
ap_->set_stream_analog_level(fake_recording_device_.MicLevel());
} else {
// Notify the current mic level to AGC.
ap_->set_stream_analog_level(settings_.aec_dump_input_filename
? aec_dump_mic_level_
: analog_mic_level_);
}
// Process the current audio frame.
if (fixed_interface) {
{
const auto st = ScopedTimer(&api_call_statistics_,
ApiCallStatistics::CallType::kCapture);
RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->ProcessStream(&fwd_frame_));
}
CopyFromAudioFrame(fwd_frame_, out_buf_.get());
} else {
const auto st = ScopedTimer(&api_call_statistics_,
ApiCallStatistics::CallType::kCapture);
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->ProcessStream(in_buf_->channels(), in_config_,
out_config_, out_buf_->channels()));
}
// Store the mic level suggested by AGC.
// Note that when the analog gain is simulated and an AEC dump is used as
// input, |analog_mic_level_| will not be used with set_stream_analog_level().
analog_mic_level_ = ap_->recommended_stream_analog_level();
if (settings_.simulate_mic_gain) {
fake_recording_device_.SetMicLevel(analog_mic_level_);
}
if (buffer_memory_writer_) {
RTC_CHECK(!buffer_file_writer_);
buffer_memory_writer_->Write(*out_buf_);
} else if (buffer_file_writer_) {
RTC_CHECK(!buffer_memory_writer_);
buffer_file_writer_->Write(*out_buf_);
}
if (linear_aec_output_file_writer_) {
bool output_available = ap_->GetLinearAecOutput(linear_aec_output_buf_);
RTC_CHECK(output_available);
RTC_CHECK_GT(linear_aec_output_buf_.size(), 0);
RTC_CHECK_EQ(linear_aec_output_buf_[0].size(), 160);
for (size_t k = 0; k < linear_aec_output_buf_[0].size(); ++k) {
for (size_t ch = 0; ch < linear_aec_output_buf_.size(); ++ch) {
RTC_CHECK_EQ(linear_aec_output_buf_[ch].size(), 160);
linear_aec_output_file_writer_->WriteSamples(
&linear_aec_output_buf_[ch][k], 1);
}
}
}
if (residual_echo_likelihood_graph_writer_.is_open()) {
auto stats = ap_->GetStatistics();
residual_echo_likelihood_graph_writer_
<< stats.residual_echo_likelihood.value_or(-1.f) << ", ";
}
++num_process_stream_calls_;
}
void AudioProcessingSimulator::ProcessReverseStream(bool fixed_interface) {
if (fixed_interface) {
{
const auto st = ScopedTimer(&api_call_statistics_,
ApiCallStatistics::CallType::kRender);
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->ProcessReverseStream(&rev_frame_));
}
CopyFromAudioFrame(rev_frame_, reverse_out_buf_.get());
} else {
const auto st = ScopedTimer(&api_call_statistics_,
ApiCallStatistics::CallType::kRender);
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->ProcessReverseStream(
reverse_in_buf_->channels(), reverse_in_config_,
reverse_out_config_, reverse_out_buf_->channels()));
}
if (reverse_buffer_file_writer_) {
reverse_buffer_file_writer_->Write(*reverse_out_buf_);
}
++num_reverse_process_stream_calls_;
}
void AudioProcessingSimulator::SetupBuffersConfigsOutputs(
int input_sample_rate_hz,
int output_sample_rate_hz,
int reverse_input_sample_rate_hz,
int reverse_output_sample_rate_hz,
int input_num_channels,
int output_num_channels,
int reverse_input_num_channels,
int reverse_output_num_channels) {
in_config_ = StreamConfig(input_sample_rate_hz, input_num_channels);
in_buf_.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(input_sample_rate_hz, kChunksPerSecond),
input_num_channels));
reverse_in_config_ =
StreamConfig(reverse_input_sample_rate_hz, reverse_input_num_channels);
reverse_in_buf_.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(reverse_input_sample_rate_hz, kChunksPerSecond),
reverse_input_num_channels));
out_config_ = StreamConfig(output_sample_rate_hz, output_num_channels);
out_buf_.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(output_sample_rate_hz, kChunksPerSecond),
output_num_channels));
reverse_out_config_ =
StreamConfig(reverse_output_sample_rate_hz, reverse_output_num_channels);
reverse_out_buf_.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(reverse_output_sample_rate_hz, kChunksPerSecond),
reverse_output_num_channels));
fwd_frame_.sample_rate_hz_ = input_sample_rate_hz;
fwd_frame_.samples_per_channel_ =
rtc::CheckedDivExact(fwd_frame_.sample_rate_hz_, kChunksPerSecond);
fwd_frame_.num_channels_ = input_num_channels;
rev_frame_.sample_rate_hz_ = reverse_input_sample_rate_hz;
rev_frame_.samples_per_channel_ =
rtc::CheckedDivExact(rev_frame_.sample_rate_hz_, kChunksPerSecond);
rev_frame_.num_channels_ = reverse_input_num_channels;
if (settings_.use_verbose_logging) {
rtc::LogMessage::LogToDebug(rtc::LS_VERBOSE);
std::cout << "Sample rates:" << std::endl;
std::cout << " Forward input: " << input_sample_rate_hz << std::endl;
std::cout << " Forward output: " << output_sample_rate_hz << std::endl;
std::cout << " Reverse input: " << reverse_input_sample_rate_hz
<< std::endl;
std::cout << " Reverse output: " << reverse_output_sample_rate_hz
<< std::endl;
std::cout << "Number of channels: " << std::endl;
std::cout << " Forward input: " << input_num_channels << std::endl;
std::cout << " Forward output: " << output_num_channels << std::endl;
std::cout << " Reverse input: " << reverse_input_num_channels << std::endl;
std::cout << " Reverse output: " << reverse_output_num_channels
<< std::endl;
}
SetupOutput();
}
void AudioProcessingSimulator::SetupOutput() {
if (settings_.output_filename) {
std::string filename;
if (settings_.store_intermediate_output) {
filename = GetIndexedOutputWavFilename(*settings_.output_filename,
output_reset_counter_);
} else {
filename = *settings_.output_filename;
}
std::unique_ptr<WavWriter> out_file(
new WavWriter(filename, out_config_.sample_rate_hz(),
static_cast<size_t>(out_config_.num_channels())));
buffer_file_writer_.reset(new ChannelBufferWavWriter(std::move(out_file)));
} else if (settings_.aec_dump_input_string.has_value()) {
buffer_memory_writer_ = std::make_unique<ChannelBufferVectorWriter>(
settings_.processed_capture_samples);
}
if (settings_.linear_aec_output_filename) {
std::string filename;
if (settings_.store_intermediate_output) {
filename = GetIndexedOutputWavFilename(
*settings_.linear_aec_output_filename, output_reset_counter_);
} else {
filename = *settings_.linear_aec_output_filename;
}
linear_aec_output_file_writer_.reset(
new WavWriter(filename, 16000, out_config_.num_channels()));
linear_aec_output_buf_.resize(out_config_.num_channels());
}
if (settings_.reverse_output_filename) {
std::string filename;
if (settings_.store_intermediate_output) {
filename = GetIndexedOutputWavFilename(*settings_.reverse_output_filename,
output_reset_counter_);
} else {
filename = *settings_.reverse_output_filename;
}
std::unique_ptr<WavWriter> reverse_out_file(
new WavWriter(filename, reverse_out_config_.sample_rate_hz(),
static_cast<size_t>(reverse_out_config_.num_channels())));
reverse_buffer_file_writer_.reset(
new ChannelBufferWavWriter(std::move(reverse_out_file)));
}
++output_reset_counter_;
}
void AudioProcessingSimulator::DestroyAudioProcessor() {
if (settings_.aec_dump_output_filename) {
ap_->DetachAecDump();
}
}
void AudioProcessingSimulator::CreateAudioProcessor() {
Config config;
AudioProcessing::Config apm_config;
std::unique_ptr<EchoControlFactory> echo_control_factory;
if (settings_.use_ts) {
config.Set<ExperimentalNs>(new ExperimentalNs(*settings_.use_ts));
}
if (settings_.multi_channel_render) {
apm_config.pipeline.multi_channel_render = *settings_.multi_channel_render;
}
if (settings_.multi_channel_capture) {
apm_config.pipeline.multi_channel_capture =
*settings_.multi_channel_capture;
}
if (settings_.use_agc2) {
apm_config.gain_controller2.enabled = *settings_.use_agc2;
if (settings_.agc2_fixed_gain_db) {
apm_config.gain_controller2.fixed_digital.gain_db =
*settings_.agc2_fixed_gain_db;
}
if (settings_.agc2_use_adaptive_gain) {
apm_config.gain_controller2.adaptive_digital.enabled =
*settings_.agc2_use_adaptive_gain;
apm_config.gain_controller2.adaptive_digital.level_estimator =
settings_.agc2_adaptive_level_estimator;
}
}
if (settings_.use_pre_amplifier) {
apm_config.pre_amplifier.enabled = *settings_.use_pre_amplifier;
if (settings_.pre_amplifier_gain_factor) {
apm_config.pre_amplifier.fixed_gain_factor =
*settings_.pre_amplifier_gain_factor;
}
}
const bool use_aec = settings_.use_aec && *settings_.use_aec;
const bool use_aecm = settings_.use_aecm && *settings_.use_aecm;
if (use_aec || use_aecm) {
apm_config.echo_canceller.enabled = true;
apm_config.echo_canceller.mobile_mode = use_aecm;
}
apm_config.echo_canceller.export_linear_aec_output =
!!settings_.linear_aec_output_filename;
if (use_aec) {
EchoCanceller3Config cfg;
if (settings_.aec_settings_filename) {
if (settings_.use_verbose_logging) {
std::cout << "Reading AEC Parameters from JSON input." << std::endl;
}
cfg = ReadAec3ConfigFromJsonFile(*settings_.aec_settings_filename);
}
if (settings_.linear_aec_output_filename) {
cfg.filter.export_linear_aec_output = true;
}
echo_control_factory.reset(new EchoCanceller3Factory(cfg));
if (settings_.print_aec_parameter_values) {
if (!settings_.use_quiet_output) {
std::cout << "AEC settings:" << std::endl;
}
std::cout << Aec3ConfigToJsonString(cfg) << std::endl;
}
}
if (settings_.use_hpf) {
apm_config.high_pass_filter.enabled = *settings_.use_hpf;
}
if (settings_.use_le) {
apm_config.level_estimation.enabled = *settings_.use_le;
}
if (settings_.use_vad) {
apm_config.voice_detection.enabled = *settings_.use_vad;
}
if (settings_.use_agc) {
apm_config.gain_controller1.enabled = *settings_.use_agc;
}
if (settings_.agc_mode) {
apm_config.gain_controller1.mode =
static_cast<webrtc::AudioProcessing::Config::GainController1::Mode>(
*settings_.agc_mode);
}
if (settings_.use_agc_limiter) {
apm_config.gain_controller1.enable_limiter = *settings_.use_agc_limiter;
}
if (settings_.agc_target_level) {
apm_config.gain_controller1.target_level_dbfs = *settings_.agc_target_level;
}
if (settings_.agc_compression_gain) {
apm_config.gain_controller1.compression_gain_db =
*settings_.agc_compression_gain;
}
config.Set<ExperimentalAgc>(new ExperimentalAgc(
!settings_.use_experimental_agc || *settings_.use_experimental_agc,
!!settings_.use_experimental_agc_agc2_level_estimator &&
*settings_.use_experimental_agc_agc2_level_estimator,
!!settings_.experimental_agc_disable_digital_adaptive &&
*settings_.experimental_agc_disable_digital_adaptive,
!!settings_.experimental_agc_analyze_before_aec &&
*settings_.experimental_agc_analyze_before_aec));
if (settings_.use_ed) {
apm_config.residual_echo_detector.enabled = *settings_.use_ed;
}
if (settings_.maximum_internal_processing_rate) {
apm_config.pipeline.maximum_internal_processing_rate =
*settings_.maximum_internal_processing_rate;
}
const bool use_legacy_ns =
settings_.use_legacy_ns && *settings_.use_legacy_ns;
if (use_legacy_ns) {
apm_config.noise_suppression.use_legacy_ns = use_legacy_ns;
}
if (settings_.use_ns) {
apm_config.noise_suppression.enabled = *settings_.use_ns;
}
if (settings_.ns_level) {
const int level = *settings_.ns_level;
RTC_CHECK_GE(level, 0);
RTC_CHECK_LE(level, 3);
apm_config.noise_suppression.level =
static_cast<AudioProcessing::Config::NoiseSuppression::Level>(level);
}
if (settings_.ns_analysis_on_linear_aec_output) {
apm_config.noise_suppression.analyze_linear_aec_output_when_available =
*settings_.ns_analysis_on_linear_aec_output;
}
RTC_CHECK(ap_builder_);
if (echo_control_factory) {
ap_builder_->SetEchoControlFactory(std::move(echo_control_factory));
}
ap_.reset((*ap_builder_).Create(config));
RTC_CHECK(ap_);
ap_->ApplyConfig(apm_config);
if (settings_.use_ts) {
ap_->set_stream_key_pressed(*settings_.use_ts);
}
if (settings_.aec_dump_output_filename) {
ap_->AttachAecDump(AecDumpFactory::Create(
*settings_.aec_dump_output_filename, -1, &worker_queue_));
}
}
} // namespace test
} // namespace webrtc