webrtc/modules/audio_processing/aec3/alignment_mixer.cc
Per Åhgren 6a05bb1b12 AEC3: Add signal dependent mixing before alignment
This CL adds code for doing signal-dependent downmixing
before the delay estimation in the multichannel case.

As part of the CL, the unittests of the render delay
controller are corrected. However, as that caused some of
them to fail, the CL (for now) as well disables the failing
test.

Bug: webrtc:11153,chromium:1029740, webrtc:11161
Change-Id: I0b765c28fa5e547aabd6dfbd24b626ff9a16346f
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/161045
Commit-Queue: Per Åhgren <peah@webrtc.org>
Reviewed-by: Sam Zackrisson <saza@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#29980}
2019-12-03 11:30:48 +00:00

160 lines
5.4 KiB
C++

/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/alignment_mixer.h"
#include <algorithm>
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
AlignmentMixer::MixingVariant ChooseMixingVariant(bool downmix,
bool adaptive_selection,
int num_channels) {
RTC_DCHECK(!(adaptive_selection && downmix));
RTC_DCHECK_LT(0, num_channels);
if (num_channels == 1) {
return AlignmentMixer::MixingVariant::kFixed;
}
if (downmix) {
return AlignmentMixer::MixingVariant::kDownmix;
}
if (adaptive_selection) {
return AlignmentMixer::MixingVariant::kAdaptive;
}
return AlignmentMixer::MixingVariant::kFixed;
}
} // namespace
AlignmentMixer::AlignmentMixer(
size_t num_channels,
const EchoCanceller3Config::Delay::AlignmentMixing& config)
: AlignmentMixer(num_channels,
config.downmix,
config.adaptive_selection,
config.activity_power_threshold,
config.prefer_first_two_channels) {}
AlignmentMixer::AlignmentMixer(size_t num_channels,
bool downmix,
bool adaptive_selection,
float activity_power_threshold,
bool prefer_first_two_channels)
: num_channels_(num_channels),
one_by_num_channels_(1.f / num_channels_),
excitation_energy_threshold_(kBlockSize * activity_power_threshold),
prefer_first_two_channels_(prefer_first_two_channels),
selection_variant_(
ChooseMixingVariant(downmix, adaptive_selection, num_channels_)) {
if (selection_variant_ == MixingVariant::kAdaptive) {
std::fill(strong_block_counters_.begin(), strong_block_counters_.end(), 0);
cumulative_energies_.resize(num_channels_);
std::fill(cumulative_energies_.begin(), cumulative_energies_.end(), 0.f);
}
}
void AlignmentMixer::ProduceOutput(rtc::ArrayView<const std::vector<float>> x,
rtc::ArrayView<float, kBlockSize> y) {
RTC_DCHECK_EQ(x.size(), num_channels_);
if (selection_variant_ == MixingVariant::kDownmix) {
Downmix(x, y);
return;
}
int ch = selection_variant_ == MixingVariant::kFixed ? 0 : SelectChannel(x);
RTC_DCHECK_GE(x.size(), ch);
std::copy(x[ch].begin(), x[ch].end(), y.begin());
}
void AlignmentMixer::Downmix(rtc::ArrayView<const std::vector<float>> x,
rtc::ArrayView<float, kBlockSize> y) const {
RTC_DCHECK_EQ(x.size(), num_channels_);
RTC_DCHECK_GE(num_channels_, 2);
std::copy(x[0].begin(), x[0].end(), y.begin());
for (size_t ch = 1; ch < num_channels_; ++ch) {
for (size_t i = 0; i < kBlockSize; ++i) {
y[i] += x[ch][i];
}
}
for (size_t i = 0; i < kBlockSize; ++i) {
y[i] *= one_by_num_channels_;
}
}
int AlignmentMixer::SelectChannel(rtc::ArrayView<const std::vector<float>> x) {
RTC_DCHECK_EQ(x.size(), num_channels_);
RTC_DCHECK_GE(num_channels_, 2);
RTC_DCHECK_EQ(cumulative_energies_.size(), num_channels_);
constexpr size_t kBlocksToChooseLeftOrRight =
static_cast<size_t>(0.5f * kNumBlocksPerSecond);
const bool good_signal_in_left_or_right =
prefer_first_two_channels_ &&
(strong_block_counters_[0] > kBlocksToChooseLeftOrRight ||
strong_block_counters_[1] > kBlocksToChooseLeftOrRight);
const int num_ch_to_analyze =
good_signal_in_left_or_right ? 2 : num_channels_;
constexpr int kNumBlocksBeforeEnergySmoothing = 60 * kNumBlocksPerSecond;
++block_counter_;
for (int ch = 0; ch < num_ch_to_analyze; ++ch) {
RTC_DCHECK_EQ(x[ch].size(), kBlockSize);
float x2_sum = 0.f;
for (size_t i = 0; i < kBlockSize; ++i) {
x2_sum += x[ch][i] * x[ch][i];
}
if (ch < 2 && x2_sum > excitation_energy_threshold_) {
++strong_block_counters_[ch];
}
if (block_counter_ <= kNumBlocksBeforeEnergySmoothing) {
cumulative_energies_[ch] += x2_sum;
} else {
constexpr float kSmoothing = 1.f / (10 * kNumBlocksPerSecond);
cumulative_energies_[ch] +=
kSmoothing * (x2_sum - cumulative_energies_[ch]);
}
}
// Normalize the energies to allow the energy computations to from now be
// based on smoothing.
if (block_counter_ == kNumBlocksBeforeEnergySmoothing) {
constexpr float kOneByNumBlocksBeforeEnergySmoothing =
1.f / kNumBlocksBeforeEnergySmoothing;
for (int ch = 0; ch < num_ch_to_analyze; ++ch) {
cumulative_energies_[ch] *= kOneByNumBlocksBeforeEnergySmoothing;
}
}
int strongest_ch = 0;
for (int ch = 0; ch < num_ch_to_analyze; ++ch) {
if (cumulative_energies_[ch] > cumulative_energies_[strongest_ch]) {
strongest_ch = ch;
}
}
if ((good_signal_in_left_or_right && selected_channel_ > 1) ||
cumulative_energies_[strongest_ch] >
2.f * cumulative_energies_[selected_channel_]) {
selected_channel_ = strongest_ch;
}
return selected_channel_;
}
} // namespace webrtc